Search for pair production of boosted Higgs bosons via vector-boson fusion in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-092, 2024.
Inspire Record 2781483 DOI 10.17182/hepdata.150977

A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, $\kappa_{2V}$. This study constrains $\kappa_{2V}$ to $0.55 < \kappa_{2V} < 1.49$ at 95% confidence level. The value $\kappa_{2V} = 0$ is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1-5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at 95% confidence level are derived.

23 data tables

The mass planes of the reconstructed Higgs boson candidates for the 1Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the VBF SM $\kappa_{2V} = 1$ HH samples.

More…

Version 2
Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2024) 047, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

91 data tables

Efficiencies of the Run 2 and Run 3 displaced dimuon triggers as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Efficiencies of the various displaced dimuon trigger paths and their combination as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. Solid curves show efficiencies achieved with the Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.

More…

Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $\mu\mu$bb and $\tau\tau$bb final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 84 (2024) 493, 2024.
Inspire Record 2760544 DOI 10.17182/hepdata.145999

A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}_1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m_{\mathrm{a}_1}$ and are observed to be in the range (0.17-3.3) $\times$ 10$^{-4}$ and (1.7-7.7) $\times$ 10$^{-2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m_{\mathrm{a}_1}$ values between 15 and 60 GeV.

4 data tables

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \mu\mu$bb) as functions of $m_{\text{a}_{1}}$. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \tau\tau$bb) in percent as functions of $m_{\text{a}_{1}}$, for the combination of the $\mu\tau_{\text{h}}$, $e\tau_{\text{h}}$, and $e\mu$ channels. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow ll$bb) in percent, where $l$ stands for muons or $\tau$ leptons, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions $m_{\text{a}_{1}}$ for 2HDM+S models, independent of the type and tan $\beta$ parameter. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

More…

New constraints on ultraheavy dark matter from the LZ experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
FERMILAB-PUB-24-0015-TD, 2024.
Inspire Record 2758452 DOI 10.17182/hepdata.151392

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$.

5 data tables

Upper limit on the WIMP-nucleon scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleus scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleon scattering cross section from the single-scatter analysis.

More…

ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 106, 2024.
Inspire Record 2755168 DOI 10.17182/hepdata.149493

A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.

2 data tables

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.


Measurement of the primary Lund jet plane density in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2024) 116, 2024.
Inspire Record 2741216 DOI 10.17182/hepdata.145874

A measurement is presented of the primary Lund jet plane (LJP) density in inclusive jet production in proton-proton collisions. The analysis uses 138 fb$^{-1}$ of data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV. The LJP, a representation of the phase space of emissions inside jets, is constructed using iterative jet declustering. The transverse momentum $k_\mathrm{T}$ and the splitting angle $\Delta R$ of an emission relative to its emitter are measured at each step of the jet declustering process. The average density of emissions as function of $\ln(k_\mathrm{T}$/GeV) and $\ln(R/\Delta R)$ is measured for jets with distance parameters $R$ = 0.4 or 0.8, transverse momentum $p_\mathrm{T} \gt$ 700 GeV, and rapidity $\vert y\vert \lt $ 1.7. The jet substructure is measured using the charged-particle tracks of the jet. The measured distributions, unfolded to the level of stable particles, are compared with theoretical predictions from simulations and with perturbative quantum chromodynamics calculations. Due to the ability of the LJP to factorize physical effects, these measurements can be used to improve different aspects of the physics modeling in event generators.

4 data tables

Primary Lund jet plane density for AK4 jets in a one-dimensional representation with bin indices for MC tuning purposes. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT). All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin), with the exception of the statistical uncertainties from data and MC, for which a separate correlation matrix is provided in this HepData record.

Correlation matrix associated to the statistical covariance matrix of the data and MC for the primary Lund jet plane density for AK4 jets in a one-dimensional representation with bin indices. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT).

Primary Lund jet plane density for AK8 jets in a one-dimensional representation with bin indices for MC tuning purposes. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT). All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin), with the exception of the statistical uncertainties from data and MC, for which a separate correlation matrix is provided in this HepData record.

More…

Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2024) 105, 2024.
Inspire Record 2735808 DOI 10.17182/hepdata.145688

A search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2-20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths $V_{\ell\mathrm{N}}$ to each lepton generation $\ell$ and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of $\lvert V_{\mu\mathrm{N}}\rvert^{2}$$\gt $ 5 (4) $\times$ 10$^{-7}$ are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm.

24 data tables

Observed number of events and predicted number of background events per category for resolved categories

Observed number of events and predicted number of background events per category for boosted categories

Two-dimensional exclusion limits for Majorana HNL pure electron coupling scenario

More…

First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Musalhi, A.K. Al ; et al.
Phys.Rev.D 109 (2024) 092003, 2024.
Inspire Record 2729878 DOI 10.17182/hepdata.145873

Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.

58 data tables

Data points used in analysis in log_10(S2)-S1 space.

Data selection efficiency as a function of nuclear recoil energy

Isoscalar WIMP-nucleon elastic coupling limit for Operator 8

More…

Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

30 data tables

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.

More…

Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 132 (2024) 172302, 2024.
Inspire Record 2725922 DOI 10.17182/hepdata.150695

This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of $1.4 < |\Delta\eta| < 1.8$ and a transverse momentum of $1 < p_{\rm T} < 2$ GeV/$c$, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in $\mathrm {e^{+}e^{-}}$ collisions at $\sqrt{s}$ = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the $\mathrm {e^{+}e^{-}}$ results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in $\mathrm {e^{+}e^{-}}$ annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in $\mathrm {e^{+}e^{-}}$ annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions.

1 data table

Ridge yield $Y_\mathrm{ridge}$ extracted at $1.4<|\Delta\eta|<1.8$ with $1.0<p_\mathrm{T,trig}<2.0\,\mathrm{GeV}/c$, $1.0<p_\mathrm{T,assoc}<2.0\,\mathrm{GeV}/c$ as a function of charged particle multiplicity counted at midrapidity $|\eta|<1.0$. The first three points at $N_\mathrm{ch}<8$ represent a 95% upper confidence limit where the statistical and systematic uncertainty have been combined.