Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.
The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.
The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.
The differential cross section measurement as a function of the transverse momentum of the first leading jet.
Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at sqrt(s) = 7 and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 inverse femtobarns, respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f[V]^R| < 0.16, |f[T]^L| < 0.057, and -0.049 < f[T]^R < 0.048, respectively. For the FCNC couplings kappa[tug] and kappa[tcg], the 95% CL upper limits on coupling strengths are |kappa[tug]|/Lambda < 4.1E-3 TeV-1 and |kappa[tcg]|/Lambda < 1.8E-2 TeV-1, where Lambda is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0E-5 and 4.1E-4 for the decays t to ug and t to cg, respectively.
Predicted and observed event yields before and after multijet BNN selection for $\sqrt{s}=7$ and $8$ TeV.
List of input variables for the Bayesian neural networks used in the analysis. Numbers in the cells indicate whether the variable was used in a network in 7 TeV analysis, 8 TeV one, or in both of them.
One-dimensional exclusion limits on anomalous $Wtb$ couplings, evaluated in different two- and three-dimensional scenarios in the analyses conducted at $\sqrt{s}=7$ and $8$ TeV.).
The nuclear modification factor RAA and the azimuthal anisotropy coefficient v[2] of prompt and nonprompt (i.e. those from decays of b hadrons) J/psi mesons, measured from PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta pt > 6.5 GeV/c and rapidity abs(y) < 2.4, extending down to pt = 3 GeV/c in the 1.6 < abs(y) < 2.4 range. The v[2] of prompt J/psi is found to be nonzero, but with no strong dependence on centrality, rapidity, or pt over the full kinematic range studied. The measured v[2] of nonprompt J/psi is consistent with zero. The RAA of prompt J/psi exhibits a suppression that increases from peripheral to central collisions but does not vary as a function of either y or pt in the fiducial range. The nonprompt J/psi RAA shows a suppression which becomes stronger as rapidity or pt increase. The v[2] and nuclear suppression of open and hidden charm, and of open charm and beauty, are compared.
Prompt J/$\psi$ $v_{2}$ as a function of centrality. The average ${N}_{\rm part}$ values correspond to events flatly distributed across centrality.
Prompt J/$\psi$ $v_{2}$ as a function of rapidity.
Prompt J/$\psi$ $v_{2}$ as a function of $p_{T}$.
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta) < 2.4, and a third particle measured in the hadron forward calorimeters (4.4 < abs(eta) < 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
Three-particle correlation with respect to the 2nd order event plane from Pb-going side in pPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.
Three-particle correlation with respect to the 2nd order event plane from p-going side in pPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.
Three-particle correlation with respect to the 2nd order event plane in PbPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.
Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy $\sqrt{s_{\rm NN}}=2.76$ TeV. The transverse momentum ($p_{\rm T}$) differential production yields at mid-rapidity were used to calculate the nuclear modification factor $R_{\rm AA}$ in the interval $3
Pb-Pb collision centrality 0-10%.
Pb-Pb collision centrality 10-20%.
Pb-Pb collision centrality 20-30%.
The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.
Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.
Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.
Breakdown of uncertainties in percent.
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a $p_{\mathrm{T}}$ region inaccessible by direct jet identification. In these measurements pseudorapidity ($\Delta\eta$) and azimuthal ($\Delta\varphi$) differences are used to extract the shape of the near-side peak formed by particles associated to a higher $p_{\mathrm{T}}$ trigger particle ($1 < p_{\mathrm{T, trig}} <$ 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. A significant broadening of the peak in the $\Delta\eta$ direction at low $p_{\mathrm{T}}$ is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the $\Delta\varphi$ direction the peak is almost independent of centrality. For the 10% most central collisions and $1 < p_{\mathrm{T, assoc}} <$ 2 GeV/c, $1 < p_{\mathrm{T, trig}} <$ 3 GeV/c a novel feature is observed: a depletion develops around the centre of the peak. The results are compared to pp collisions at the same centre of mass energy and to AMPT model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of near-side peak in the 0-10% centrality bin divided by the variance of the near-side peak in the 50-80% centrality bin.
In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher $p_{\mathrm{T}}$ trigger particle. Measurements of these correlations as a function of pseudorapidity ($\Delta\eta$) and azimuthal ($\Delta\varphi$) differences are used to extract the centrality and $p_{\mathrm{T}}$ dependence of the shape of the near-side peak in the $p_{\mathrm{T}}$ range $1 < p_{\mathrm{T}} <$ 8 GeV/c in Pb-Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the $\Delta\varphi$ direction is almost independent of centrality, a significant broadening in the $\Delta\eta$ direction is found from peripheral to central collisions. This feature is prominent for the low $p_{\mathrm{T}}$ region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp in the $\Delta\varphi$ direction and above 3 GeV/c in the $\Delta\eta$ direction. Furthermore, for the 10\% most central collisions and $1 < p_{\mathrm{T, assoc}} <$ 2 GeV/c, $1 < p_{\mathrm{T, trig}} <$ 3 GeV/c a departure from a Gaussian shape is found: a depletion develops around the centre of the peak. The results are compared to AMPT model simulations as well as other theoretical calculations indicating that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of near-side peak in the 0-10% centrality bin divided by the variance of the near-side peak in the 50-80% centrality bin.
The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 inverse femtobarns collected at sqrt(s)= 7 TeV, and 19.6 inverse femtobarns at sqrt(s)= 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 < m[Z] < 111 GeV are sigma(pp to WZ; sqrt(s)= 7 TeV) = 20.14 +/- 1.32 (stat) +/- 1.13 (syst) +/- 0.44 (lumi) pb and sigma(pp to WZ; sqrt(s)= 8 TeV) = 24.09 +/- 0.87 (stat) +/- 1.62 (syst) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson pt, the leading jet pt, and the number of jets are obtained using the sqrt(s)= 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
The measured WZ cross section for 71 < mZ < 111 GeV using 7 TeV data. The theory uncertainty only includes QCD scales variations.
The measured WZ cross section for 71 < mZ < 111 GeV using 8 TeV data. The theory uncertainty only includes QCD scales variations.
Differential cross section as function of the Z boson transverse momentum.
A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum pT and the absolute jet rapidity abs(y) is presented. Data from LHC proton-proton collisions at sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-kT clustering algorithm with a size parameter of 0.7 in a phase space region covering jet pT from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-pT jet range between 21 and 74 GeV is also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is alpha[S(M[Z]) = 0.1164 +0.0060 -0.0043, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented.
Inclusive Jet Cross Section for 0.0 < |y| < 0.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.6%.
Inclusive Jet Cross Section for 0.5 < |y| < 1.0 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 4.4%.
Inclusive Jet Cross Section for 1.0 < |y| < 1.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 4.4%.