Date

Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Eur.Phys.J.C 16 (2000) 1-40, 2000.
Inspire Record 524027 DOI 10.17182/hepdata.49981

We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.

22 data tables

Updated values of coupling constants and electroweak mixing angle.

Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.

Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.

More…

Dimuon and charm production in nucleus nucleus collisions at the CERN-SPS.

The NA38 & NA50 collaborations Abreu, M.C. ; Alessandro, B. ; Alexa, C. ; et al.
Eur.Phys.J.C 14 (2000) 443-455, 2000.
Inspire Record 524686 DOI 10.17182/hepdata.57421

Muon pair production in p-A, S-U and Pb-Pb collisions has been studied by the NA38 and NA50 collaborations at the CERN SPS. In this paper we present an analysis of the dimuon invariant mass region bet

1 data table

CHARM-CHARMBAR cross section Need to divide by 2 to consider only the XF>0 hemisphere.


Loss of memory of target nucleus deformation axis in heavy ion fusion fission

Hinde, D. J. ; Pan, W. ; Berriman, A. C. ; et al.
Phys.Rev.C 62 (2000) 024615, 2000.
Inspire Record 530771 DOI 10.17182/hepdata.25429

Fission fragment cross sections and angular anisotropies have been measured to high accuracy following fusion of 16O with the strongly deformed nucleus 182W, at bombarding energies spanning the fusion barrier region. Together with existing evaporation residue data, they show that at all the beam energies, the statistical transition state model adequately describes the fission properties measured. No significant evidence was found for a memory of the different configurations at fusion resulting from the target nucleus deformation, in contrast with previous measurements for deformed actinide nuclei.

1 data table

No description provided.


Reaction mechanisms and multifragmentation processes in Zn-64 + Ni-58 at 35A-MeV to 79A-MeV

Wada, R. ; Hagel, K. ; Cibor, J. ; et al.
Phys.Rev.C 62 (2000) 034601, 2000.
Inspire Record 530848 DOI 10.17182/hepdata.25430

Reaction mechanisms and multifragmentation processes have been studied for 64Zn+58Ni collisions at intermediate energies with the help of antisymmetrized molecular dynamics (AMD-V) model calculations. Experimental energy spectra, angular distributions, charge distributions, and isotope distributions, classified by their associated charged particle multiplicities, are compared with the results of the AMD-V calculations. In general the experimental results are reasonably well reproduced by the calculations. The multifragmentation observed experimentally at all incident energies is also reproduced by the AMD-V calculations. A detailed study of AMD-V events reveals that, in nucleon transport, the reaction shows some transparency, whereas in energy transport the reaction is much less transparent at all incident energies studied here. The transparency in the nucleon transport indicates that, even for central collisions, about 75% of the projectile nucleons appear in the forward direction. In energy transport about 80% of the initial kinetic energy of the projectile in the center- of-mass frame is dissipated. The detailed study of AMD-V events also elucidates the dynamics of the multifragmentation process. The study suggests that, at 35A MeV, the semitransparency and thermal expansion are the dominant mechanisms for the multifragmentation process, whereas at 49A MeV and higher incident energies a nuclear compression occurs at an early stage of the reaction and plays an important role in the multifragmentation process in addition to that of the thermal expansion and the semitransparency.

2 data tables

No description provided.

Average summed transverse momentum.


Total reaction and neutron removal cross-sections of (30-60)A MeV He and Li isotopes on Pb

Warner, R. E. ; McKinnon, M. H. ; Shaner, N. C. ; et al.
Phys.Rev.C 62 (2000) 024608, 2000.
Inspire Record 530690 DOI 10.17182/hepdata.25484

Total reaction cross sections σR of (30–60)AMeV 4,6,8He and 6,7,8,9,11Li on Pb, and 2n-removal cross sections σ−2n of 6,8He and 11Li on Pb, were measured by injecting magnetically separated, focused, monoenergetic, secondary beams of those projectiles into a telescope containing Pb targets separated by thin Si detectors. All these σR’s (except 4He), and σ−2n for 6He and 11Li, are underpredicted by microscopic model calculations which include only nuclear forces. Better agreement is achieved by including electromagnetic dissociation in the model, for those projectiles for which either the electric dipole response functions or the dominant photodissociation cross sections were known. The cross sections σ−4n for 8He, σ−xn for 7,8,9Li, and (σ−3n+σ−4n) for 11Li were found to be ⩽0.7 b. All σR’s were measured to better than 5% accuracy, showing that the method is usable for other target elements sandwiched into a Si telescope.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Reaction and total cross-sections for 400-MeV 500-MeV pi- on nuclei

Gelderloos, C. J. ; Brack, J. T. ; Holcomb, M. D. ; et al.
Phys.Rev.C 62 (2000) 024612, 2000.
Inspire Record 530755 DOI 10.17182/hepdata.25463

Attenuation measurements of reaction and total cross sections have been made for π− beams at 410, 464, and 492 MeV on targets of CD2, 6Li, C, Al, S, Ca, Cu, Zr, Sn, and Pb. These results are assisted by and compared to predictions from a recent eikonal optical model. Calculations with this model, which does not include pion absorption, agree with recent elastic scattering data, but are significantly below our measured reaction and total cross sections.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Anti-proton helium-3 annihilation at 55-MeV/c

Bianconi, A. ; Bonomi, G. ; Bussa, M.P. ; et al.
Phys.Lett.B 492 (2000) 254-258, 2000.
Inspire Record 538722 DOI 10.17182/hepdata.27999

The p̄ 3 He annihilation cross section is measured for the first time in the momentum interval (50÷60) MeV/ c . About 9000 pictures collected by the Streamer Chamber Collaboration (PS179) at LEAR–CERN have been scanned. Six events are found, corresponding to σ ann =1850±700 mb. The result is compared to the set of measurements presently available in the region of low p̄ momentum.

1 data table

The mean beam momentum at the center of the fiducial volume = 55 MeV.


Antineutron proton total cross section from 50-MeV/c to 400-MeV/c.

The OBELIX collaboration Iazzi, F. ; Feliciello, A. ; Agnello, M. ; et al.
Phys.Lett.B 475 (2000) 378-385, 2000.
Inspire Record 527242 DOI 10.17182/hepdata.28048

The antineutron–proton total cross section has been measured in the low momentum range 50–400 MeV/ c (below 100 MeV/ c for the first time). The measurement was performed at LEAR (CERN) by the OBELIX experiment, thanks to its unique antineutron beam facility. A thick target transmission technique has been used. The measured total cross section shows an anomalous behaviour below 100 MeV/ c . A dominance of the isospin I =0 channel over the I =1 one at low energy is clearly deduced.

1 data table

Measured values of the total cross section.


Isospin resolved double pion production in the reaction p + d --> He-3 + 2pi.

Andersson, M. ; Bargholtz, C. ; Fransson, K. ; et al.
Phys.Lett.B 485 (2000) 327-333, 2000.
Inspire Record 532724 DOI 10.17182/hepdata.28016

Neutral and charged two-pion production in p+d→ 3 He+2 π reactions has been studied at CELSIUS at a proton beam energy of 477 MeV. The total cross section for double pion production is 0.22±0.03 μ b. The ratio of the cross sections for the production of charged pion pairs with isospin T =1 and T =0 was determined to be σ ( π + π − ; T =1)/ σ ( π + π − ; T =0)=1.4±0.4.

1 data table

(I=1, I=0) stands for isospin of PI+ PI- system.


Pionic fusion to a halo state, the d(alpha,Li-6*)pi0 reaction studied close to threshold.

Andersson, M. ; Bargholtz, C. ; Fransson, K. ; et al.
Phys.Lett.B 481 (2000) 165-170, 2000.
Inspire Record 529623 DOI 10.17182/hepdata.28018

The d( α , 6 Li ∗ 3.56 ) π 0 reaction has been studied at E c.m. =1.2 and 1.9 MeV above threshold with an alpha-particle beam incident on a deuterium cluster-jet target in CELSIUS. Complete differential cross sections were measured at both energies, integrated to σ =228±6+70 nb and 141±12+42 nb respectively. Observed large anisotropies are discussed in relation to the cluster structure of the 6 Li ∗ halo.

1 data table

The excited LI6* level has E=3.56 mev (at the highest beam energy the second T=1 state in LI6 at 5.37 mev is possible to populate).