Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

531 data tables

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.

More…

Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies

Allgower, C.E. ; Ball, J. ; Beddo, M.E. ; et al.
Phys.Rev.C 60 (1999) 054002, 1999.
Inspire Record 508562 DOI 10.17182/hepdata.25565

Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.

20 data tables

Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.

Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.

Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.

More…

Angular dependence of the p p elastic scattering analyzing power between 0.8-GeV and 2.8-GeV. 1. Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 60 (1999) 054001, 1999.
Inspire Record 508563 DOI 10.17182/hepdata.25566

Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.

21 data tables

Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.

Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.

Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.

More…

Quasi-elastic p n scattering in Li-6_D and Li-6_H targets from 1.1-GeV to 2.4-GeV.

de Lesquen, A. ; Allgower, C.E. ; Ball, J. ; et al.
Eur.Phys.J.C 11 (1999) 69-78, 1999.
Inspire Record 505046 DOI 10.17182/hepdata.43332

A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol

17 data tables

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

More…

Elastic and quasi-elastic p p scattering in Li-6_H and Li-6_D targets between 1.1-GeV and 2.4-GeV.

Ball, J. ; Allgower, C.E. ; Beddo, M. ; et al.
Eur.Phys.J.C 11 (1999) 51-67, 1999.
Inspire Record 505045 DOI 10.17182/hepdata.43403

A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and

25 data tables

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

More…

The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…