Showing 10 of 1784 results
A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.
Distribution of $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0.5}^{1}$ (LHA) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{1}^{1}$ (width) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{2}^{1}$ (thrust) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\varepsilon$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $z_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\Delta R_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $n_{SD}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{21}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{32}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{43}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{0}$ (N) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0.5}^{1}$ (LHA) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{1}^{1}$ (width) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{2}^{1}$ (thrust) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\varepsilon$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $z_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\Delta R_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $n_{SD}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{21}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{32}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{43}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0.5}^{1}$ (LHA) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{1}^{1}$ (width) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{2}^{1}$ (thrust) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\varepsilon$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $z_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\Delta R_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $n_{SD}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{21}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{32}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{43}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{0}$ (N) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0.5}^{1}$ (LHA) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{1}^{1}$ (width) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{2}^{1}$ (thrust) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\varepsilon$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $z_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\Delta R_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $n_{SD}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{21}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{32}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{43}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Measurements of the top quark polarization and top quark pair ($\mathrm{t\bar{t}}$) spin correlations are presented using events containing two oppositely charged leptons (e$^+$e$^-$, e$^\pm\mu^\mp$, or $\mu^+\mu^-$) produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A set of parton-level normalized differential cross sections, sensitive to each of the independent coefficients of the spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix, is measured for the first time at 13 TeV. The measured distributions and extracted coefficients are compared with standard model predictions from simulations at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD), and from NLO QCD calculations including electroweak corrections. All measurements are found to be consistent with the expectations of the standard model. The normalized differential cross sections are used in fits to constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark to $-$0.24 $
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S3 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S4 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S5 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable Afb versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S7 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S8 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S9 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P1 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P2 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P3 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P4' versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P5' versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P6' versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The optimised observable P8' versus q2. The first (second) error bars represent the statistical (total) uncertainties.
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 0.10 < q2 < 0.98 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 1.10 < q2 < 2.50 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 2.50 < q2 < 4.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 4.00 < q2 < 6.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 6.00 < q2 < 8.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 11.00 < q2 < 12.50 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 15.00 < q2 < 17.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 17.00 < q2 < 19.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 1.10 < q2 < 6.00 GeV2/c4
Correlation matrix for the CP-averaged observables FL, AFB and S3–S9 from the maximum-likelihood fit in the interval 15.00 < q2 < 19.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 0.10 < q2 < 0.98 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 1.10 < q2 < 2.50 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 2.50 < q2 < 4.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 4.00 < q2 < 6.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 6.00 < q2 < 8.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 11.00 < q2 < 12.50 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 15.00 < q2 < 17.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 17.00 < q2 < 19.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 1.10 < q2 < 6.00 GeV2/c4
Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 15.00 < q2 < 19.00 GeV2/c4
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
Optimised angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-averaged angular observables evaluated using the method of moments. The first uncertainties are statistical and the second systematic.
CP-asymmetries evaluated using the method of moments. The first uncertainties are statistical and the second systematic.
Optimised observables evaluated using the method of moments. The first uncertainties are statistical and the second systematic.
Zero-crossing points determined with an amplitude fit.
Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 < q^2 < 2.5~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $2.5 < q^2 < 4.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $4.0 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $6.0 < q^2 < 8.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $11.0 <q^2< 12.5 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 < q^2 < 17.0 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $17.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 < q^2 < 2.5~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $2.5 < q^2 < 4.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $4.0 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $6.0 < q^2 < 8.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $11.0 <q^2< 12.5 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 <q^2< 17.0 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $17.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 < q^2 < 2.5~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $2.5 < q^2 < 4.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $4.0 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $6.0 < q^2 < 8.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $11.0 <q^2< 12.5 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 <q^2< 17.0 ~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $17.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $1.1 <q^2< 6.0~{\rm GeV}^2/c^4$.
Likelihood correlation matrix $15.0 <q^2< 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $0.10 < q^2 < 0.98~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $1.1 < q^2 < 2.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $2.0 < q^2 < 3.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $3.0 < q^2 < 4.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $4.0 < q^2 < 5.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $5.0 < q^2 < 6.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $6.0 < q^2 < 7.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $7.0 < q^2 < 8.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.00 <q^2 < 11.75~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.75 <q^2 < 12.50~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 <q^2 < 16.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $16.0 <q^2 < 17.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $17.0 <q^2 < 18.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $18.0 <q^2 < 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 <q^2 < 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $0.10 < q^2 < 0.98~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $1.1 < q^2 < 2.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $2.0 < q^2 < 3.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $3.0 < q^2 < 4.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $4.0 < q^2 < 5.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $5.0 < q^2 < 6.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $6.0 < q^2 < 7.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $7.0 < q^2 < 8.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.00 <q^2 < 11.75~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.75 <q^2 < 12.50~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 <q^2 < 16.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $16.0 <q^2 < 17.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $17.0 <q^2 < 18.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $18.0 <q^2 < 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 <q^2 < 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $0.1 <q^2 < 0.98~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $1.1 <q^2 < 2.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $2.0 <q^2 < 3.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $3.0 <q^2 < 4.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $4.0 <q^2 < 5.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $5.0 <q^2 < 6.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $6.0 <q^2 < 7.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $7.0 <q^2 < 8.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.0 <q^2 < 11.75~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $11.75 <q^2 < 12.5~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 <q^2 < 16.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $16.0 <q^2 < 17.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $17.0 < q^2 < 18.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $18.0 < q^2 < 19.0~{\rm GeV}^2/c^4$.
Bootstrap correlation matrix $15.0 < q^2 < 19.0~{\rm GeV}^2/c^4$.
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_{21}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of $\Delta R$ between the leading charged particle jet and the dilepton system. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.
Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level top quark rapidity
Covariance of the differential absolute cross section as a function of the parton-level top quark rapidity
Differential absolute cross section as a function of the parton-level charged lepton $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level charged lepton $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level charged lepton rapidity
Covariance of the differential absolute cross section as a function of the parton-level charged lepton rapidity
Differential absolute cross section as a function of the parton-level W boson $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level W boson $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level cosine of the top quark polarisation angle
Covariance of the differential absolute cross section as a function of the parton-level cosine of the top quark polarisation angle
Differential absolute cross section as a function of the particle-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the particle-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the particle-level top quark rapidity
Covariance of the differential absolute cross section as a function of the particle-level top quark rapidity
Differential absolute cross section as a function of the particle-level charged lepton $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the particle-level charged lepton $p_\textrm{T}$
Differential absolute cross section as a function of the particle-level charged lepton rapidity
Covariance of the differential absolute cross section as a function of the particle-level charged lepton rapidity
Differential absolute cross section as a function of the particle-level W boson $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the particle-level W boson $p_\textrm{T}$
Differential absolute cross section as a function of the particle-level cosine of the top quark polarisation angle
Covariance of the differential absolute cross section as a function of the particle-level cosine of the top quark polarisation angle
Differential normalised cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential normalised cross section as a function of the parton-level top quark rapidity
Covariance of the differential normalised cross section as a function of the parton-level top quark rapidity
Differential normalised cross section as a function of the parton-level charged lepton $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the parton-level charged lepton $p_\textrm{T}$
Differential normalised cross section as a function of the parton-level charged lepton rapidity
Covariance of the differential normalised cross section as a function of the parton-level charged lepton rapidity
Differential normalised cross section as a function of the parton-level W boson $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the parton-level W boson $p_\textrm{T}$
Differential normalised cross section as a function of the parton-level cosine of the top quark polarisation angle
Covariance of the differential normalised cross section as a function of the parton-level cosine of the top quark polarisation angle
Differential normalised cross section as a function of the particle-level top quark $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the particle-level top quark $p_\textrm{T}$
Differential normalised cross section as a function of the particle-level top quark rapidity
Covariance of the differential normalised cross section as a function of the particle-level top quark rapidity
Differential normalised cross section as a function of the particle-level charged lepton $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the particle-level charged lepton $p_\textrm{T}$
Differential normalised cross section as a function of the particle-level charged lepton rapidity
Covariance of the differential normalised cross section as a function of the particle-level charged lepton rapidity
Differential normalised cross section as a function of the particle-level W boson $p_\textrm{T}$
Covariance of the differential normalised cross section as a function of the particle-level W boson $p_\textrm{T}$
Differential normalised cross section as a function of the particle-level cosine of the top quark polarisation angle
Covariance of the differential normalised cross section as a function of the particle-level cosine of the top quark polarisation angle
Differential charge ratio as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the parton-level top quark $p_\textrm{T}$
Differential charge ratio as a function of the parton-level top quark rapidity
Covariance of the differential charge ratio as a function of the parton-level top quark rapidity
Differential charge ratio as a function of the parton-level charged lepton $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the parton-level charged lepton $p_\textrm{T}$
Differential charge ratio as a function of the parton-level charged lepton rapidity
Covariance of the differential charge ratio as a function of the parton-level charged lepton rapidity
Differential charge ratio as a function of the parton-level W boson $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the parton-level W boson $p_\textrm{T}$
Differential charge ratio as a function of the particle-level top quark $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the particle-level top quark $p_\textrm{T}$
Differential charge ratio as a function of the particle-level top quark rapidity
Covariance of the differential charge ratio as a function of the particle-level top quark rapidity
Differential charge ratio as a function of the particle-level charged lepton $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the particle-level charged lepton $p_\textrm{T}$
Differential charge ratio as a function of the particle-level charged lepton rapidity
Covariance of the differential charge ratio as a function of the particle-level charged lepton rapidity
Differential charge ratio as a function of the particle-level W boson $p_\textrm{T}$
Covariance of the differential charge ratio as a function of the particle-level W boson $p_\textrm{T}$
Top quark spin asymmetry at the parton level in the muon and electron channel and their combination
Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.
Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.
Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{t}$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{t}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{t}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{t}$.
Measured absolute differential cross section at parton level as a function of $p_{T}^{\bar{t}}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{\bar{t}}$.
Measured normalised differential cross section at parton level as a function of $p_{T}^{\bar{t}}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{\bar{t}}$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{\bar{t}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{\bar{t}}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{\bar{t}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{\bar{t}}$.
Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$ (leading).
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$ (leading).
Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$ (leading).
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{t}$ (leading).
Measured absolute differential cross section at particle level as a function of $p_{T}^{t}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t}$ (leading).
Measured normalised differential cross section at particle level as a function of $p_{T}^{t}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{t}$ (leading).
Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$ (trailing).
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$ (trailing).
Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$ (trailing).
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{t}$ (trailing).
Measured absolute differential cross section at particle level as a function of $p_{T}^{t}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t}$ (trailing).
Measured normalised differential cross section at particle level as a function of $p_{T}^{t}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{t}$ (trailing).
Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Measured absolute differential cross section at particle level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Measured normalised differential cross section at particle level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{t}$($t\bar{t}$ RF).
Measured absolute differential cross section at parton level as a function of $y_{t}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $y_{t}$.
Measured normalised differential cross section at parton level as a function of $y_{t}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $y_{t}$.
Measured absolute differential cross section at particle level as a function of $y_{t}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $y_{t}$.
Measured normalised differential cross section at particle level as a function of $y_{t}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $y_{t}$.
Measured absolute differential cross section at parton level as a function of $y_{\bar{t}}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $y_{\bar{t}}$.
Measured normalised differential cross section at parton level as a function of $y_{\bar{t}}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $y_{\bar{t}}$.
Measured absolute differential cross section at particle level as a function of $y_{\bar{t}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $y_{\bar{t}}$.
Measured normalised differential cross section at particle level as a function of $y_{\bar{t}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $y_{\bar{t}}$.
Measured absolute differential cross section at parton level as a function of $y_{t}$ (leading).
Covariance matrix of the absolute differential cross section at parton level as a function of $y_{t}$ (leading).
Measured normalised differential cross section at parton level as a function of $y_{t}$ (leading).
Covariance matrix of the normalised differential cross section at parton level as a function of $y_{t}$ (leading).
Measured absolute differential cross section at particle level as a function of $y_{t}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $y_{t}$ (leading).
Measured normalised differential cross section at particle level as a function of $y_{t}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $y_{t}$ (leading).
Measured absolute differential cross section at parton level as a function of $y_{t}$ (trailing).
Covariance matrix of the absolute differential cross section at parton level as a function of $y_{t}$ (trailing).
Measured normalised differential cross section at parton level as a function of $y_{t}$ (trailing).
Covariance matrix of the normalised differential cross section at parton level as a function of $y_{t}$ (trailing).
Measured absolute differential cross section at particle level as a function of $y_{t}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $y_{t}$ (trailing).
Measured normalised differential cross section at particle level as a function of $y_{t}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $y_{t}$ (trailing).
Measured absolute differential cross section at parton level as a function of $p_{T}^{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t\bar{t}}$.
Measured normalised differential cross section at parton level as a function of $p_{T}^{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $p_{T}^{t\bar{t}}$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t\bar{t}}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{t\bar{t}}$.
Measured absolute differential cross section at parton level as a function of $y_{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $y_{t\bar{t}}$.
Measured normalised differential cross section at parton level as a function of $y_{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $y_{t\bar{t}}$.
Measured absolute differential cross section at particle level as a function of $y_{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $y_{t\bar{t}}$.
Measured normalised differential cross section at particle level as a function of $y_{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $y_{t\bar{t}}$.
Measured absolute differential cross section at parton level as a function of $m_{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at parton level as a function of $m_{t\bar{t}}$.
Measured normalised differential cross section at parton level as a function of $m_{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at parton level as a function of $m_{t\bar{t}}$.
Measured absolute differential cross section at particle level as a function of $m_{t\bar{t}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $m_{t\bar{t}}$.
Measured normalised differential cross section at particle level as a function of $m_{t\bar{t}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $m_{t\bar{t}}$.
Measured absolute differential cross section at parton level as a function of $\Delta|y|(t,\bar{t})$.
Covariance matrix of the absolute differential cross section at parton level as a function of $\Delta|y|(t,\bar{t})$.
Measured normalised differential cross section at parton level as a function of $\Delta|y|(t,\bar{t})$.
Covariance matrix of the normalised differential cross section at parton level as a function of $\Delta|y|(t,\bar{t})$.
Measured absolute differential cross section at particle level as a function of $\Delta|y|(t,\bar{t})$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\Delta|y|(t,\bar{t})$.
Measured normalised differential cross section at particle level as a function of $\Delta|y|(t,\bar{t})$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\Delta|y|(t,\bar{t})$.
Measured absolute differential cross section at parton level as a function of $\Delta\phi(t,\bar{t})$.
Covariance matrix of the absolute differential cross section at parton level as a function of $\Delta\phi(t,\bar{t})$.
Measured normalised differential cross section at parton level as a function of $\Delta\phi(t,\bar{t})$.
Covariance matrix of the normalised differential cross section at parton level as a function of $\Delta\phi(t,\bar{t})$.
Measured absolute differential cross section at particle level as a function of $\Delta\phi(t,\bar{t})$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\Delta\phi(t,\bar{t})$.
Measured normalised differential cross section at particle level as a function of $\Delta\phi(t,\bar{t})$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\Delta\phi(t,\bar{t})$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{l}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{l}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{l}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{l}$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{\bar{l}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{\bar{l}}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{\bar{l}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{\bar{l}}$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{l}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{l}$ (leading).
Measured normalised differential cross section at particle level as a function of $p_{T}^{l}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{l}$ (leading).
Measured absolute differential cross section at particle level as a function of $p_{T}^{l}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{l}$ (trailing).
Measured normalised differential cross section at particle level as a function of $p_{T}^{l}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{l}$ (trailing).
Measured absolute differential cross section at particle level as a function of $\eta_{l}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{l}$.
Measured normalised differential cross section at particle level as a function of $\eta_{l}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{l}$.
Measured absolute differential cross section at particle level as a function of $\eta_{\bar{l}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{\bar{l}}$.
Measured normalised differential cross section at particle level as a function of $\eta_{\bar{l}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{\bar{l}}$.
Measured absolute differential cross section at particle level as a function of $\eta_{l}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{l}$ (leading).
Measured normalised differential cross section at particle level as a function of $\eta_{l}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{l}$ (leading).
Measured absolute differential cross section at particle level as a function of $\eta_{l}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{l}$ (trailing).
Measured normalised differential cross section at particle level as a function of $\eta_{l}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{l}$ (trailing).
Measured absolute differential cross section at particle level as a function of $p_{T}^{l\bar{l}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{l\bar{l}}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{l\bar{l}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{l\bar{l}}$.
Measured absolute differential cross section at particle level as a function of $m_{l\bar{l}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $m_{l\bar{l}}$.
Measured normalised differential cross section at particle level as a function of $m_{l\bar{l}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $m_{l\bar{l}}$.
Measured absolute differential cross section at particle level as a function of $\Delta\phi(l,\bar{l})$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\Delta\phi(l,\bar{l})$.
Measured normalised differential cross section at particle level as a function of $\Delta\phi(l,\bar{l})$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\Delta\phi(l,\bar{l})$.
Measured absolute differential cross section at particle level as a function of $\Delta|\eta|(l,\bar{l})$.
Covariance matrix of the absolute differential cross section at particle level as a function of $\Delta|\eta|(l,\bar{l})$.
Measured normalised differential cross section at particle level as a function of $\Delta|\eta|(l,\bar{l})$.
Covariance matrix of the normalised differential cross section at particle level as a function of $\Delta|\eta|(l,\bar{l})$.
Measured absolute differential cross section at particle level as a function of $p_{T}^{b}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{b}$ (leading).
Measured normalised differential cross section at particle level as a function of $p_{T}^{b}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{b}$ (leading).
Measured absolute differential cross section at particle level as a function of $p_{T}^{b}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{b}$ (trailing).
Measured normalised differential cross section at particle level as a function of $p_{T}^{b}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{b}$ (trailing).
Measured absolute differential cross section at particle level as a function of $\eta_{b}$ (leading).
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{b}$ (leading).
Measured normalised differential cross section at particle level as a function of $\eta_{b}$ (leading).
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{b}$ (leading).
Measured absolute differential cross section at particle level as a function of $\eta_{b}$ (trailing).
Covariance matrix of the absolute differential cross section at particle level as a function of $\eta_{b}$ (trailing).
Measured normalised differential cross section at particle level as a function of $\eta_{b}$ (trailing).
Covariance matrix of the normalised differential cross section at particle level as a function of $\eta_{b}$ (trailing).
Measured absolute differential cross section at particle level as a function of $p_{T}^{b\bar{b}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{b\bar{b}}$.
Measured normalised differential cross section at particle level as a function of $p_{T}^{b\bar{b}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $p_{T}^{b\bar{b}}$.
Measured absolute differential cross section at particle level as a function of $m_{b\bar{b}}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $m_{b\bar{b}}$.
Measured normalised differential cross section at particle level as a function of $m_{b\bar{b}}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $m_{b\bar{b}}$.
Measured absolute differential cross section at particle level as a function of $N_{jets}$.
Covariance matrix of the absolute differential cross section at particle level as a function of $N_{jets}$.
Measured normalised differential cross section at particle level as a function of $N_{jets}$.
Covariance matrix of the normalised differential cross section at particle level as a function of $N_{jets}$.
A full set of optimized observables is measured in an angular analysis of the decay B$^0$$\to$ K$^*$(892)$^0\mu^+\mu^-$ using a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The analysis is performed in six bins of the squared invariant mass of the dimuon system, $q^2$, over the range 1.1 $\lt$$q^2$$\lt$ 16 GeV$^2$. The results are among the most precise experimental measurements of the angular observables for this decay and are compared to a variety of predictions based on the standard model. Some of these predictions exhibit tension with the measurements.
Results for the $F_\mathrm{L}$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_1$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_2$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_3$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_4^\prime$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_5^\prime$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_6^\prime$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_8^\prime$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the CP averaged observables $F_L$ and $P_1$–$P_8^\prime$. The first uncertainties are statistical and the second systematic.
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 1.1 < $q^2$ < 2 GeV$^2$
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 2 < $q^2$ < 4.3 GeV$^2$
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 4.3 < $q^2$ < 6 GeV$^2$
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 6 < $q^2$ < 8.68 GeV$^2$
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 10.09 < $q^2$ < 12.86 GeV$^2$
Correlation matrix of angular observables Fl and P1–P8', considering only the statistical uncertainties from the maximum-likelihood fit in the interval 14.18 < $q^2$ < 16 GeV$^2$
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.