Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Statistical covariance between bins of Table 1
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
This paper reports the observation of top-quark pair production in proton-lead collisions in the ATLAS experiment at the Large Hadron Collider. The measurement is performed using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_\mathrm{NN}}=8.16$ TeV in 2016. Events are categorised in two analysis channels, consisting of either events with exactly one lepton (electron or muon) and at least four jets, or events with two opposite-charge leptons and at least two jets. In both channels at least one $b$-tagged jet is also required. Top-quark pair production is observed with a significance over five standard deviations in each channel. The top-quark pair production cross-section is measured to be $\sigma_{t\bar{t}}= 58.1\pm 2.0\;\mathrm{(stat.)\;^{+4.8}_{-4.4} \;\mathrm{(syst.)}}\;\mathrm{nb}$, with a total uncertainty of 9%. In addition, the nuclear modification factor is measured to be $R_{p\mathrm{A}} = 1.090\pm0.039\;(\mathrm{stat.})\;^{+0.094}_{-0.087}\;(\mathrm{syst.})$. The measurements are found to be in good agreement with theory predictions involving nuclear parton distribution functions.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the post-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $\mu$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Hadronic decays of the t quark and the H or Z boson are reconstructed from the kinematic properties of jets, including those containing b hadrons. No deviation from the standard model prediction is observed in the reconstructed tH and tZ invariant mass distributions. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.
Five-jet invariant mass distributions in the 2M1L region after the high-mass (green crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass selection is more efficient for signal T masses above 700 GeV.
Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 2M1L and 3M regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.
Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 3M and 3T regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.
This Letter presents the first measurements of the groomed jet radius $R_\mathrm{g}$ and the jet girth $g$ in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables $R_\mathrm{g}$ and $g$ provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb$^{-1}$ and 301 pb$^{-1}$, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum $p_\mathrm{T}^\gamma$$>$ 100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum $p_\mathrm{T}^\text{jet}$ such that $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4. The measured $R_\mathrm{g}$ and $g$ distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.8, i.e., those that closely balance the photon $p_\mathrm{T}^\gamma$, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.
Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.
Covariance matrix of the statistical uncertainty in data for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.
Covariance matrix of the statistical uncertainty in MC for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.
A search is presented for an extended Higgs sector with two new particles, X and $\phi$, in the process $X \to\phi\phi\to(\gamma\gamma)(\gamma\gamma)$. Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at $\sqrt{s}$ = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. No evidence of such resonances is seen. Upper limits are set on the production cross section for $m_X$ between 300 and 3000 GeV and $m_\phi / m_X$ between 0.5 and 2.5%, representing the most sensitive search in this channel.
Observed differential $m_{\Gamma\Gamma}$ mass spectrum for $0.44 < \alpha < 0.49$%, where $\alpha = m_\phi/m_X$. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential $m_{\Gamma\Gamma}$ mass spectrum for 0.3$ < \alpha < $0.35%, where $\alpha = m_\phi/m_X$. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential $m_{\Gamma\Gamma}$ mass spectrum for 0.35$ < \alpha < $0.4%, where $\alpha = m_\phi/m_X$. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
The first search for the Z boson decay to $\tau\tau\mu\mu$ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z $\to$ $\tau\tau\mu\mu$ to Z $\to$ 4$\mu$ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.
Distribution of $m_{4\mu}$ after the maximum likelihood fit of the background-only model (stacked histograms) to the data (black points). The nuisance parameters are set to their post-fit values and the signal (black dotted line) is overlaid, scaled to the upper limit on its cross section of 6.9 times the SM expectation. The gray shaded areas in both panels correspond to the total uncertainty in the background prediction. The black vertical bars indicate the statistical uncertainty in the data.
Observed limits at the 95% CL on $C_{\mathrm{LL}}^{2233}$ vs. $C_{\mathrm{LR}}^{2332}$ (red) showing the full range.
Observed limits at the 95% CL on $C_{\mathrm{LR}}^{2233}$ vs. $C_{\mathrm{LL}}^{2332}$ (orange) showing the full range.
A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, $\kappa_{2V}$. This study constrains $\kappa_{2V}$ to $0.55 < \kappa_{2V} < 1.49$ at 95% confidence level. The value $\kappa_{2V} = 0$ is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1-5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at 95% confidence level are derived.
The mass planes of the reconstructed Higgs boson candidates for the 1Pass selections of the analysis, shown for the data events.
The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the data events.
The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the VBF SM $\kappa_{2V} = 1$ HH samples.
The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.
Isoscalar interaction coupling limit for Lagrangian 1
Isovector interaction coupling limit for Lagrangian 19
Isoscalar interaction coupling limit for Lagrangian 19
The inclusive production of the charm-strange baryon $\Omega^{0}_{\rm c}$ is measured for the first time via its semileptonic decay into $\Omega^{-}\rm e^{+}\nu_{e}$ at midrapidity ($|y|<0.8$) in proton$-$proton (pp) collisions at the centre-of-mass energy $\sqrt{s}=13$ TeV with the ALICE detector at the LHC. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval $2
The $p_{\rm T}$-differential production cross sections of inclusive $\Omega^0_{\rm c}$ baryons multiplied by the branching ratios (BR) into $\Omega^{-}{\rm e}^{+}\nu_{\rm e}$ in pp collisions at $\sqrt{s} =$ 13 TeV for $|y| < 0.8$.
$p_{\rm T}$-differential branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$.
Comparison of $p_{\rm T}$-independent branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$ between experiments and theoretical calculations.
A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum $p_\mathrm{T}$. This observable is measured in multijet events over the range of $p_\mathrm{T}$ = 360-3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb$^{-1}$. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1177 $\pm$ 0.0013 (exp) $_{-0.0073}^{+0.0116}$ (theo) = 0.1177 $_{-0.0074}^{+0.0117}$, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of $\alpha_\mathrm{S}(m_\mathrm{Z})$ in the TeV region shows no deviation from the expected NLO pQCD behaviour.
Bin-to-bin correlation matrix for the $R_{\Delta\phi}(p_\mathrm{T})$ distribution at the particle level.
The $R_{\Delta\phi}(p_\mathrm{T})$ distribution at the particle level as a function of $p_\mathrm{T}$.
Nonperturbative corrections for the $R_{\Delta\phi}(p_\mathrm{T})$ distribution.