Charged jet cross section and fragmentation in proton-proton collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.D 99 (2019) 012016, 2019.
Inspire Record 1693308 DOI 10.17182/hepdata.86229

We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 7 TeV. Jets with pseudo-rapidity $\left| \eta \right| < {\rm 0.5}$ are reconstructed from charged particles using the anti-$k_{\rm T}$ jet finding algorithm with a resolution parameter $R$ = 0.4. The jet cross section is measured in the transverse momentum interval 5 $\leq p_{\rm T}^{\rm ch \; jet} <$ 100 GeV/$c$. Jet fragmentation is studied measuring the scaled transverse momentum spectra of the charged constituents of jets in four intervals of jet transverse momentum between 5 GeV/$c$ and 30 GeV/$c$. The measurements are compared to calculations from the PYTHIA model as well as next-to-leading order perturbative QCD calculations with POWHEG + PYTHIA8. The charged jet cross section is described by POWHEG for the entire measured range of $p_{\rm T}^{\rm ch \; jet}$. For $p_{\rm T}^{\rm ch \; jet}$ $>$ 40 GeV/$c$, the PYTHIA calculations also agree with the measured charged jet cross section. PYTHIA6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for PYTHIA8.

4 data tables

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross section ratios for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV for $5<p_{T}^{ch jet}<10$ GeV/$c$.

Measured charged jet differential cross section ratios for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV for $10<p_{T}^{ch jet}<15$ GeV/$c$.

More…

Measurement of inclusive forward neutron production cross section in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 11 (2018) 073, 2018.
Inspire Record 1692008 DOI 10.17182/hepdata.87099

In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: $\eta > 10.76$, $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of $\mathrm{0.194~nb^{-1}}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For $\eta > 10.76$, no model is able to reproduce the observed peak structure at around $\mathrm{5~TeV}$ and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around $\mathrm{1.5-2.5~TeV}$.

3 data tables

Inclusive neutron (and antineutron) production cross section in $\eta > 10.76$

Inclusive neutron (and antineutron) production cross section in $8.99 < \eta < 9.22$

Inclusive neutron (and antineutron) production cross section in $8.81 < \eta < 8.99$


Measurement of forward photon production cross-section in proton–proton collisions at $\sqrt{s}$ = 13 TeV with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 780 (2018) 233-239, 2018.
Inspire Record 1518782 DOI 10.17182/hepdata.86566

In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of $\eta\,&gt;\,10.94$ and $8.99\,&gt;\,\eta\,&gt;\,8.81$, measured by the LHCf experiment with proton--proton collisions at $\sqrt{s}$ = 13 TeV. The results from the analysis of 0.191 $\mathrm{nb^{-1}}$ of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.

2 data tables

Inclusive photon production cross section in $\eta > 10.94$

Inclusive photon production cross section in $8.81<\eta<8.99$


Photoproduction of the $f_1(1285)$ Meson

The CLAS collaboration Dickson, R. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 93 (2016) 065202, 2016.
Inspire Record 1452551 DOI 10.17182/hepdata.72793

The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.

1 data table

Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.


Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

$\pi^{-}$C collisions with backward proton emission at 4 and 40 GeV/c

Angelov, N. ; Lutpullaev, S.L. ; Nikitina, V.F. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 98-99, 1981.
Inspire Record 1392857 DOI 10.17182/hepdata.17814

None

13 data tables

PROTONS MOMENTA LIE IN LAB BACKWARD HEMISPHERE.

No description provided.

No description provided.

More…

Study of $\pi^0$ pair production in single-tag two-photon collisions

The Belle collaboration Masuda, M. ; Uehara, S. ; Watanabe, Y. ; et al.
Phys.Rev.D 93 (2016) 032003, 2016.
Inspire Record 1390112 DOI 10.17182/hepdata.71443

We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.

10 data tables

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.

More…

Forward scattering of GeV photons from carbon and tungsten

Eisenhandler, E. ; Mistry, N. ; Mostek, P. ; et al.
Phys.Lett.B 24 (1967) 347-348, 1967.
Inspire Record 1389656 DOI 10.17182/hepdata.29584

Small angle (≈3°) scattering of GeV photons from carbon and tungsten has been measured. The results are compared with the predictions of a simple “optical theorem” model, where the total cross-section for photon absorption is taken to be the incoherent sum of absorption on single nucleons.

1 data table

Only stattistical errors are presented.


Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 03 (2015) 092, 2015.
Inspire Record 1332186 DOI 10.17182/hepdata.73124

A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.

11 data tables

Integrated cross section in the measurement phase space.

Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.

Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.

More…

Measurement of the $\phi^*_\eta$ distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb$^{-1}$ of $p\bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 072002, 2015.
Inspire Record 1324946 DOI 10.17182/hepdata.72484

We present a measurement of the distribution of the variable $\phi^*_\eta$ for muon pairs with masses between 30 and 500 GeV, using the complete Run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb$^{-1}$ at $\sqrt{s}$ = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable $\phi^*_\eta$ probes the same physical effects as the $Z/\gamma^*$ boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the $\phi^*_\eta$ distributions for dilepton masses away from the $Z\rightarrow \ell^+\ell^-$ boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.

6 data tables

Table of results for the dimuon channel for $|y|<1$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

Table of results for the dimuon channel for $1<|y|<2$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

Table of results for the dimuon channel for $|y|<1$ region $30 < M_{\ell\ell} < 60$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

More…