We report charged-particle pair correlation analyses in the space of Delta -phi (azimuth) and Delta -eta (pseudo-rapidity), for central Au + Au collisions at sqrt{s_{NN}} = 200 GeV in the STAR detector. The analysis involves unlike-sign charge pairs and like-sign charge pairs, which are transformed into charge-dependent (CD) signals and charge-independent (CI) signals. We present detailed parameterizations of the data. A model featuring dense gluonic hot spots as first proposed by van Hove predicts that the observables under investigation would have sensitivity to such a substructure should it occur, and the model also motivates selection of transverse momenta in the range 0.8 < p_t < 2.0$ GeV/c. Both CD and CI correlations of high statistical significance are observed and possible interpretations are discussed.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 2: a) left side: The correlation data for the ratio of the histograms of same-event-pairs to mixed-event-pairs for unlike-sign charged pairs, shown in a two-dimensional (2-D) perspective plot $\Delta\phi$ - $\Delta\eta$. The plot was normalized to a mean of 1. b) right side: The similar correlation data for like-sign charge pairs.
Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.
Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.
Inclusive electrons yield versus transverse momentum in P+P collisions.
D0 yield versus transverse momentum in D+AU collisions.
The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.
Directed flow of charged hadrons v1{3} as a function of pseudorapidity for 10–70% centrality.
Directed flow of charged hadrons v1 {EP1,EP2} as a function of pseudorapidity for 20–60% centrality.
Charged hadron v2 for the centrality bins 5 to 10% and in steps of 10% starting at 10, 20, 30, 40, 50, 60, and 70 up to 80% along with min. bias as a function of p_T.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.
1D correlation function for different values of SL (antisplitting cut).
1D correlation functions for differeny values of the maximum fraction of merged hits allowed.
Projections of the 3 dimensional correlation function and corresponding fits for negative pions from the 0-5% most central events and k_T = [150,250] MeV/c according to the standard and Bowler-Sinyukov procedures.
We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| < 0.5) over the range of 0.3 < pT < 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 < pT < 5 GeV/c.
Transverse momentum distribution for $\pi^+$ production in d+Au minbias events in the mid rapidity region, $|y|<0.5$.
Transverse momentum distribution for $\pi^+$ production in p+p NSD events in the mid rapidity region, $|y|<0.5$.
Transverse momentum distribution for $\pi^+$ production in d+Au collisions with centrality 0-20% in the mid rapidity region, $|y|<0.5$.
We present strange particle spectra and yields measured at mid-rapidity in $\sqrt{\text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($\mathrm{m_{T}}\equiv\sqrt{\mathrm{p_{T}}^{2}+\mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher \mt and that there is a difference in the shape of the \mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $\Lambda$ and $\Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (\mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Transverse energy ($E_T$) distributions have been measured for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV by the STAR collaboration at RHIC. $E_T$ is constructed from its hadronic and electromagnetic components, which have been measured separately. $E_T$ production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of $E_T$ per charged particle agrees well with measurements at lower collision energy, indicating that the growth in $E_T$ for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total $E_T$ is consistent with a final state dominated by mesons and independent of centrality.
Typical MIP spectrum. The hits correspond to isolated tracks with p > 1.25 GeV/c which project to EMC towers. The peak corresponds to the energy deposited by non-showering hadrons (MIP peak).
$p/E_{tower}$ spectrum for electron candidates, selected through $dE/dx$ from the TPC, with 1.5 < p < 5.0 GeV/c. A well defined electron peak is observed. The dashed line corresponds to the hadronic background in the $dE/dx$-identified electron sample.
Upper plot: points are measured $p/E_{tower}$ electron peak position as a function of the distance to the center of the tower. The solid line is from a calculation based on a full GEANT simulation of the detector response to electrons. Lower plot: points show measured energy deposited by electrons in the tower as a function of the momentum for distances to the center of the tower smaller than 2.0 cm. The first point is the electron equivalent energy of the minimum ionizing particles. The solid line is a second order polynomial fit of the data.
We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at sqrt(s_NN) = 130 GeV. The measurements cover a phase space region of 0.2 < p_T < 6.0 GeV/c in transverse momentum and -1 < eta < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |eta| < 1 are reported and compared to our previously published results for |eta| < 0.5. No significant difference is seen for inclusive p_T distributions of charged hadrons in these two pseudorapidity bins. We measured dN/deta distributions and truncated mean p_T in a region of p_T > p_T^cut, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured p_T region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.
Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.
Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.
dN/d$\eta$ distributions for $p_{T}$ $>$ 2 GeV/c and -1 $<$ $\eta$ $<$ 1 scaled by $N_{bin}$ and divided by the NN reference
We report on p-Lambda, p-Lambda bar, p bar-Lambda and p bar-Lambda bar correlation functions constructed in central Au-Au collisions at sqrt(s_NN)=200GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p-Lambda and p bar-Lambda bar correlation functions. They are found to be smaller than the pion source size also measured by the STAR detector. This could be a consequence of the collision fireball's collective expansion. The p-Lambda bar and p bar-Lambda correlations, which are measured for the first time, exhibit a large anti-correlation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function.
Invariant mass of the selected $\Lambda$ background not substracted with $0.3 < p_t < 2.0$ GeV/c. The y axis represents the number of candidates used in this analysis.
Invariant mass of the selected $\bar{\Lambda}$ background not substracted with $0.3 < p_t < 2.0$ GeV/c. The y axis represents the number of candidates used in this analysis.
The purity and momentum-resolution corrected correlation functions $C_{true}(k^{*})$ for $p-\Lambda$, $\bar{p}-\bar{\Lambda}$ (a), $\bar{p}-\Lambda$, $p-\bar{\Lambda}$ (b). Curves correspond to fits done using the Lednicky and Lyuboshitz analytical model [12].
We present the first measurement of multiplicity and pseudorapidity distributions of photons in the pseudorapidity region 2.3 $\le$ $\eta$ $\le$ 3.7 for different centralities in Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. We find that the photon yield in this pseudorapidity range scales with the number of participating nucleons at all collision centralities studied. The pseudorapidity distribution of photons, dominated by neutral pion decays, has been compared to those of identified charged pions, photons, and inclusive charged particles from heavy ion and nucleon-nucleon collisions at various energies. The photon production in the measured pseudorapidity region has been shown to be consistent with the energy and centrality independent limiting fragmentation scenario.
${dN_{\gamma}}\over{d\eta}$ for various event centrality classes compared to HIJING and AMPT model calculations.
Variation of $N_{\gamma}$ per participant pair in PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band reflects uncertainties in $N_{part}$ calculations.