Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
This Letter reports on a first measurement of the inclusive W+jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma(W+ \ge n) / sigma(W+ \ge n-1) for inclusive jet multiplicities n=1-4. The results, based on an integrated luminosity of 1.3 pb-1, have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n \le 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.
The measured cross section times branching ratio for W+jets in the electron channel as a function of corrected jet multiplicity.
The measured cross section times branching ratio for W+jets in the muon channel as a function of corrected jet multiplicity.
The measured cross section ratio for W+jets in the electron channel as a function of corrected jet multiplicity.
Using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally-segmented electromagnetic and hadronic calorimeters. The underlying event is measured and subtracted event-by-event, giving estimates of jet transverse energy above the ambient background. The transverse energies of dijets in opposite hemispheres is observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, and which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.
Asymmetry in the different centrality regions for 2.76 TeV/Nucleon PB-PB collisions.
Asymmetry in 7 TeV P-P collisions.
DeltaPhi distribution in the different centrality regions for 2.76 TeV/Nucleon PB-PB collisions.
Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The 'underlying event' is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest-pt charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, pt density, and average pt are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.
Particle Number Density versus Lead Particle PT at centre-of-mass energy 900 GeV.
Particle Number Density versus Lead Particle PT at centre-of-mass energy 7000 GeV.
Particle PT Density versus Lead Particle PT at centre-of-mass energy 900 GeV.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0$^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for Higgs boson transverse momentum ptH. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the Higgs boson rapidity |yH|. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the number of jets Njets with pT > 30 GeV. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with $H^{\pm}$ decays hadronically or leptonically, the search targets $\tau$+jets and $\tau$+lepton final states, in both cases with a hadronically decaying $\tau$-lepton. No evidence of a charged Higgs boson is found. For the mass range of $m_{H^{\pm}}$ = 90-2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.2-0.0025 pb. In the mass range 90-160 GeV, assuming the Standard Model cross-section for $t\overline{t}$ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction $\mathrm{B}(t\to bH^{\pm}) \times \mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
Observed and expected 95% CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed and expected 95% CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times\mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the hMSSM, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
A search for resonant and non-resonant pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data with $\sqrt{s}= 13$ TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. The semileptonic and fully hadronic decays of the $\tau$-lepton pair are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for non-resonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the Standard Model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances $X$ in the mass range $305~{\rm GeV} < m_X < 402~{\rm GeV}$ in the simplified hMSSM minimal supersymmetric model for $\tan\beta=2$ and excluding bulk Randall-Sundrum gravitons $G_{\mathrm{KK}}$ in the mass range $325~{\rm GeV} < m_{G_{\mathrm{KK}}} < 885~{\rm GeV}$ for $k/\overline{M}_{\mathrm{Pl}} = 1$.
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 1 process
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 2 process
Observed and expected limits at 95% CL on the cross-sections of hMSSM scalar X to HH process
A search for heavy right-handed Majorana or Dirac neutrinos $N_R$ and heavy right-handed gauge bosons $W_R$ is performed in events with a pair of energetic electrons or muons, with the same or opposite electric charge, and two energetic jets. The events are selected from $pp$ collision data with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model are observed. The results are interpreted within the theoretical framework of a left-right symmetric model and lower limits are set on masses in the heavy right-handed $W$ boson and neutrino mass plane. The excluded region extends to $m_{W_R}=4.7$ TeV for both Majorana and Dirac $N_R$ neutrinos.
Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.
Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.
Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Majorana $N_R$ neutrino $ee$ channel.
A search for new charged massive gauge bosons, $W^\prime$, is performed with the ATLAS detector at the LHC. Data were collected in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV and correspond to an integrated luminosity of 36.1 $\textrm{fb}^{-1}$. This analysis searches for $W^\prime$ bosons in the $W^\prime \rightarrow t\bar{b}$ decay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0 TeV and considers right-handed $W^\prime$ bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the $W^\prime \rightarrow t\bar{b}$ cross section times branching ratio and the $W^\prime$ boson effective couplings as a function of the $W^\prime$ boson mass. For right-handed $W^\prime$ bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for $W^\prime \rightarrow t\bar{b}$ in the fully hadronic final state. Using the combined searches, right-handed $W^\prime$ bosons with masses below 3.25 TeV are excluded at the 95% confidence level.
Signal selection efficiency (efficiency is defined as the number of events passing all selections divided by the total number of simulated $W' \to t\bar{b} \to \ell \nu b \bar{b}$ events) in the signal region as a function of the simulated $W^\prime_{\textrm{R}}$ mass.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ electron validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ muon validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.