Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables match query

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

Observation of forward neutron multiplicity dependence of dimuon acoplanarity in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 127 (2021) 122001, 2021.
Inspire Record 1829248 DOI 10.17182/hepdata.95233

The first measurement of the dependence of $\gamma\gamma$$\to$$\mu^{+}\mu^{-}$ production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, with an integrated luminosity of approximately 1.5 nb$^{-1}$, were collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region 8 $\lt$$m_{\mu\mu}$$\lt$ 60 GeV are extracted for events including 0, 1, or at least 2 neutrons detected in the forward pseudorapidity range $|\eta|$$\gt$ 8.3. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions.

14 data tables match query

Neutron multiplicity dependence of acoplanarity ($\alpha$) from process $\gamma\gamma$ to $\mu^+\mu^-$ in ultraperipheral PbPb at $\sqrt{s_{NN}}=5.02$ TeV.

Neutron multiplicity dependence of acoplanarity ($\alpha$) from process $\gamma\gamma$ to $\mu^+\mu^-$ in ultraperipheral PbPb at $\sqrt{s_{NN}}=5.02$ TeV.

Neutron multiplicity dependence of acoplanarity ($\alpha$) from process $\gamma\gamma$ to $\mu^+\mu^-$ in ultraperipheral PbPb at $\sqrt{s_{NN}}=5.02$ TeV.

More…

Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

9 data tables match query

The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

More…

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 9.2 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 024911, 2010.
Inspire Record 831944 DOI 10.17182/hepdata.93265

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $\sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (<pT>), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $\sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, <pT>, and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.

27 data tables match query

Second order event plane resolution measured in the TPC as a function of collision centrality for.

Efficiency × acceptance for reconstructed pions, kaons, and protons in the TPC as a function of p_T at midrapidity.

Percentage of pion background contribution estimated from HIJING+GEANT as a function of p_T at midrapidity.

More…

Distributions of charged hadrons associated with high transverse momentum particles in p p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 95 (2005) 152301, 2005.
Inspire Record 675307 DOI 10.17182/hepdata.96233

Charged hadrons in 0.15 < pt < 4 GeV/c associated with particles of pt^trig > 4 GeV/c are reconstructed in pp and Au+Au collisions at sqrt(s_NN)=200 GeV. The associated multiplicity and pt magnitude sum are found to increase from pp to central Au+Au collisions. The associated pt distributions, while similar in shape on the near side, are significantly softened on the away side in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the away-side fragments approach equilibration with the medium traversed.

25 data tables match query

Dphi correlation functions for 0.15 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.

Dphi correlation functions for 0.15 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.

Dphi correlation functions for 2 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.

More…

Pion interferometry in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 044906, 2005.
Inspire Record 664843 DOI 10.17182/hepdata.93263

We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.

44 data tables match query

1D correlation function for different values of SL (antisplitting cut).

1D correlation functions for differeny values of the maximum fraction of merged hits allowed.

Projections of the 3 dimensional correlation function and corresponding fits for negative pions from the 0-5% most central events and k_T = [150,250] MeV/c according to the standard and Bowler-Sinyukov procedures.

More…

Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at s(NN)**1/2 = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 616 (2005) 8-16, 2005.
Inspire Record 628232 DOI 10.17182/hepdata.98859

Identified mid-rapidity particle spectra of $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor ($R_{dAu}$) between protons $(p+\bar{p})$ and charged hadrons ($h$) in the transverse momentum range $1.2<{p_{T}}<3.0$ GeV/c is measured to be $1.19\pm0.05$(stat)$\pm0.03$(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of $(p+\bar{p})/h$ in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.

5 data tables match query

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

More…

Phi meson production in Au + Au and p + p collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 612 (2005) 181-189, 2005.
Inspire Record 651461 DOI 10.17182/hepdata.99154

We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of <pt> versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.

3 data tables match query

Transverse mass distributions for $\phi$ meson from Au+Au (circles) and p+p (squares) collisions at 200 GeV. For clarity, some Au+Au distributions for different centralities are scaled by factors. The top 5% data are obtained from the central trigger data set. All other distributions are obtained from the minimum-bias data set. Dashed lines represent the exponential fits to the distributions and the dotted-dashed line is the result of a double-exponential fit to the distribution from p+p collisions. Error bars are statistical errors only. (x500), (x30), etc. in plot refers to the scaling of data for clearer visual results.

Results of $\phi$ meson inverse slope parameter, $<p_T>$, and dN/dy from NSD p+p and Au+Au collisions at RHIC. All values are for |y| < 0.5. Systematic uncertainties: for Au, 11% on both dN/dy and $<p_T>$. For p+p, 15% on dN/dy and 5% on $<p_T>$.

$R_{CP}$ (a): The ratio of central (top 5%) over peripheral (60-80%) ($R_{CP}$) normalized by $<N_{bin}>$. The ratios for the $\Lambda$ and $K_S^0$, shown by dotted-dashed and dashed lines, are taken from [13]; $R_{AA}$ (b) and (c) are the ratios of central Au + Au (top 5%) to p + p and peripheral Au + Au (60-80%) to p + p, respectively. The values of $R_{AA}$ for charged hadrons are shown as open circles [25]. The width of the gray bands represent the uncertainties in the estimation of $<N_{bin}>$ summed in quadrature with the normalization uncertainties of the spectra. Errors on the $\phi$ data points are the statistical plus 15% systematic errors. Overall normalization errors from binary scaling are listed in the header of each column.


Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 80 (2009) 111108, 2009.
Inspire Record 836952 DOI 10.17182/hepdata.99156

We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.

3 data tables match query

Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s}$ = 200 GeV, compared to a NLO pQCD calculations [8] based on the DDS set of fragmentation functions [24], and to the STAR $\pi^{+-}$ measurement [25]. Normalization uncertainty of 11.7% is not included.

Mean transverse momentum fraction of $\pi^0$s in their associated jets, as a function of pion $p_T$, for electromagnetically triggered events. Systematic errors are shown by the shaded band around the data points. The curves are results from simulations with the PYTHIA event generator. The solid curve includes detector effects simulated by geant, while the dashed curve uses jet finding at the pythia particle level.

Longitudinal double-spin asymmetry for inclusive $\pi^0$ production at midrapidity in p+p collisions at $\sqrt{s}$ = 200 GeV, compared to NLO pQCD calculations based on the gluon distributions from the GRSV [33], GS-C [34], and DSSV [12] global analyses. The systematic error (shaded band) does not include a 9.4% normalization uncertainty due to the beam polarization measurement.


rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

5 data tables match query

The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.

The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.

The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.

More…