Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.
The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.
The double differential prompt K0S production cross section in three rapidity bands.
The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.
The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.
Dijet double differential cross section for the absolute rapidity region 0.0 to 0.4.
Dijet double differential cross section for the absolute rapidity region 0.4 to 0.8.
Dijet double differential cross section for the absolute rapidity region 0.8 to 1.2.
We present the first measurement of dijet angular distributions in ppbar collisions at sqrt{s}=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of up to 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25TeV to above 1.1TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models we set the most stringent direct limits to date.
Normalized differential distribution in CHI(dijet) for two-jet mass 250 to 300 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 300 to 400 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 400 to 500 GeV and the non perturbative correction factor.
The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.
Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.
Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.
Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.
First measurements of the differential cross sections for the inclusive production of a photon in association with a heavy quark (c, b) jet are presented, covering photon transverse momenta 30-150 GeV, photon rapidities | y_gamma| < 1.0, jet rapidities |y_jet| < 0.8, and jet transverse momenta pT_jet > 15 GeV. The results are based on an integrated luminosity of 1 fb^-1 in ppbar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for (GAMMA CJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.
Measured cross section as a function of the jet transverse momentum.
Measured cross section as a function of the jet rapidity.
Measured cross section as a function of the Z0 transverse momentum.
The process $p\bar{p} \to \gamma$ + jet + X is studied using 1.0 $fb^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider at a center-of-mass energy $\sqrt{s}$=1.96 TeV. Photons are reconstructed in the central rapidity region |$y^{\gamma}$|< 1.0 with transverse momenta in the range 30<$p^{\gamma}_T$<400 GeV while jets are reconstructed in either the central |$y^{jet}$|< 0.8 or forward 1.5 <|$y^{jet}$|<2.5 rapidity intervals with $p^{jet}_T$> 15 GeV. The differential cross section $d^3\sigma/dp^{\gamma}_T dy^\gamma dy^{jet}$ is measured as a function of $p^{\gamma}_T$ in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for the region ABS(YRAP(JET)) 1.5 to 2.5 and YRAP(GAMMA)*YRAP(JET) > 0.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.
The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.
Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.
Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.