We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.
Measured cross section as a function of the jet transverse momentum.
Measured cross section as a function of the jet rapidity.
Measured cross section as a function of the Z0 transverse momentum.
Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.
Total cross sections for electrons from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events.
Correlation matrix for all rapidity Z bosons for the 12 bins used for PT < 30.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events for the absolute rapidity region > 2 and PT < 30 GeV.
Inclusive jet cross sections in Z/gamma^* events, with Z/gamma^* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in ppbar collisions at sqrt{s} = 1.96 TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb^-1. The measurements cover the rapidity region | yjet | < 2.1 and the transverse momentum range ptjet > 30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
Total cross section for .GE.1JET.
Total cross section for .GE.2JET.
Total cross section for .GE.3JET.
Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).
The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 < Q^2 < 0.7 GeV^2 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+ -> D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 < y < 0.85, 1.5 < p_T(D*) < 9.0 GeV and |eta(D*)| < 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.
Total cross section measurement.. The second DSYS error is due to the uncertainty in the branching ratio.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of Y.
We present a new measurement of the $B^+$ meson differential cross section $d\sigma/d p_T$ at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 739pb$^{-1}$ collected with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider. $B^+$ candidates are reconstructed through the decay $B^+ \to J/\psi K^+$, with $J/\psi \to \mu^+ \mu^-$. The integrated cross section for producing $B^+$ mesons with $p_T \geq 6$ GeV/c and $|y| \leq 1$ is measured to be $2.78 \pm 0.24 \mu$b
The differential cross section (nb/GeV/c) for B+ mesons as a function of pT.
The The B+ production cross section.
Inclusive jet cross sections in photoproduction for events containing a $D^*$ meson have been measured with the ZEUS detector at HERA using an integrated luminosity of $78.6 {\rm pb}^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$, and a photon-proton centre-of-mass energy in the range $130<W_{\gamma p}<280 {\rm GeV}$. The measurements are compared with next-to-leading-order (NLO) QCD calculations. Good agreement is found with the NLO calculations over most of the measured kinematic region. Requiring a second jet in the event allowed a more detailed comparison with QCD calculations. The measured dijet cross sections are also compared to Monte Carlo (MC) models which incorporate leading-order matrix elements followed by parton showers and hadronisation. The NLO QCD predictions are in general agreement with the data although differences have been isolated to regions where contributions from higher orders are expected to be significant. The MC models give a better description than the NLO predictions of the shape of the measured cross sections.
Cross section as a function of the jet transverse energy for INCLUSIVE events containing at least one D* meson in different jet pseudorapidity regions.
Cross section as a function of the jet transverse energy for INCLUSIVE events containing at least one D* meson in different jet pseudorapidity regions.
Cross section as a function of the jet transverse energy for INCLUSIVE events containing at least one D* meson in different jet pseudorapidity regions.
We present a new measurement of the inclusive and differential production cross sections of $J/\psi$ mesons and $b$-hadrons in proton-antiproton collisions at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 39.7 pb$^{-1}$ collected by the CDF Run II detector. We find the integrated cross section for inclusive $J/\psi$ production for all transverse momenta from 0 to 20 GeV/$c$ in the rapidity range $|y|<0.6$ to be $4.08 \pm 0.02 (stat)^{+0.36}_{-0.33} (syst) \mu {\rm b}$. We separate the fraction of $J/\psi$ events from the decay of the long-lived $b$-hadrons using the lifetime distribution in all events with $p_T(J/\psi) > 1.25$ GeV/$c$. We find the total cross section for $b$-hadrons, including both hadrons and anti-hadrons, decaying to $J/\psi$ with transverse momenta greater than 1.25 GeV/$c$ in the rapidity range $|y(J/\psi)|<0.6$, is $ 0.330 \pm 0.005 (stat) ^{+0.036}_{-0.033} (syst) ~\mu{\rm b}$. Using a Monte Carlo simulation of the decay kinematics of $b$-hadrons to all final states containing a $J/\psi$, we extract the first measurement of the total single $b$-hadron cross section down to zero transverse momentum at $\sqrt{s}=1960$ GeV. We find the total single $b$-hadron cross section integrated over all transverse momenta for $b$-hadrons in the rapidity range $|y|<0.6$ to be $ 17.6 \pm 0.4 (stat)^{+2.5}_{-2.3} (syst) \mu{\rm b}$.
Integrated J/PSI cross section shown both uncorrected and corrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
Differential cross section times branching ratio (5.88+-0.10PCT) into mu+mu- as a function of transverse momentum for the rapidity range -0.6 to 0.6 at a centre-of-mass energy of 1960 GeV.
Integrated bottom-hadron prouction cross section shown both uncorrected andcorrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.
Cross section as a function of the diphoton mass.
Cross section as a function of the diphoton transverse momentum.
Cross section as a function of the diphoton azimuthal angle difference.