Version 3
Measurement of the dependence of the hadron production fraction ratio $f_\mathrm{s} / f_\mathrm{u}$ and $f_\mathrm{d} / f_ \mathrm{u}$ on B meson kinematic variables in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 121901, 2023.
Inspire Record 2610522 DOI 10.17182/hepdata.134069

The dependence of the ratio between the B$_\mathrm{s}^0$ and B$^+$ hadron production fractions, $f_\mathrm{s} / f_\mathrm{u}$, on the transverse momentum ($p_\mathrm{T}$) and rapidity of the B mesons is studied using the decay channels B$_\mathrm{s}^0$$\to$ J$/\psi\,\phi$ and B$^+$$\to$ J$/\psi$ K$^+$. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6 fb$^{-1}$. The $f_\mathrm{s} / f_\mathrm{u}$ ratio is observed to depend on the B $p_\mathrm{T}$ and to be consistent with becoming asymptotically constant at large $p_\mathrm{T}$. No rapidity dependence is observed. The ratio of the B$^0$ to B$^+$ hadron production fractions, $f_\mathrm{d} / f_\mathrm{u}$, measured using the B$^0$$\to$ J$/\psi$ K$^{*0}$ decay channel, is found to be consistent with unity and independent of $p_\mathrm{T}$ and rapidity, as expected from isospin invariance.

5 data tables

The $\mathrm{J/\psi \phi}$, $\mathrm{J/\psi K}$, and $\mathrm{J/\psi} \mathrm{K}^{*0}$ invariant mass distributions, for $\mathrm{B}$ meson candidates with $20 < p_T < 23$ GeV, and asociated fits as described in the text.

Left pannel. The vertical bars (boxes) represent the statistical (bin-to-bin systematic) uncertainties, while the horizontal bars give the bin widths. The global uncertainty (of 2.3%) is not graphically represented. The blue line represents the average for $p_T > 18$ GeV. For comparison, the LHCb measurement [10.1103/PhysRevLett.124.122002] is also shown. $ 12 < \mathrm{B} \, p_T < 70$ GeV and $ 0 < |y| < 2.4 $. Global uncertanties are not included in the table (2.3%)

Right pannel. The vertical bars (boxes) represent the statistical (bin-to-bin systematic) uncertainties, while the horizontal bars give the bin widths. The global uncertainty (of 2.3%) is not graphically represented. The blue line represents the average for $p_T > 18$ GeV. For comparison, the LHCb measurement [10.1103/PhysRevLett.124.122002] is also shown. $ 12 < \mathrm{B} \, p_T < 70$ GeV and $ 0 < |y| < 2.4 $. Global uncertanties are not included in the table (2.3%)

More…

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 59 (2023) 80, 2023.
Inspire Record 2132332 DOI 10.17182/hepdata.152804

High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.

35 data tables

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The flow coefficients $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ (from top to bottom panels) of protons, deuterons and tritons (from left to right panels) in semi-central ($20 - 30 \%$) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV as a function of the centre-of-mass rapidity $y_{cm}$ in transverse momentum intervals of $50$ MeV$/c$ width. Systematic uncertainties are displayed as boxes. Lines are to guide the eye.

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Directed, elliptic and higher order flow harmonics of protons, deuterons and tritons in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Rev.Lett. 125 (2020) 262301, 2020.
Inspire Record 1797626 DOI 10.17182/hepdata.102468

Flow coefficients $v_{n}$ of the orders $n = 1 - 6$ are measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI for protons, deuterons and tritons as a function of centrality, transverse momentum and rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV. Combining the information from the flow coefficients of all orders allows to construct for the first time, at collision energies of a few GeV, a multi-differential picture of the angular emission pattern of these particles. It reflects the complicated interplay between the effect of the central fireball pressure on the emission of particles and their subsequent interaction with spectator matter. The high precision information on higher order flow coefficients is a major step forward in constraining the equation-of-state of dense baryonic matter.

18 data tables

The $p_{t}$ dependence of $v_{1}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

The $p_{t}$ dependence of $v_{3}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

The $p_{t}$ dependence of $v_{5}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

More…

Version 2
Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au(1.23A GeV)$+$Au

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

18 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

Reduced transverse mass ($m_{t}-m_{0}$) spectra of $K^{0}_{S}$ for the 0-40% most central events. NOTE: The spectra are not scaled by $1/N_{Events}$! To compare the data, divide by $N_{Events} = 2.1997626 x 10^{9}$

More…

Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

13 data tables

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.

$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.

More…

Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2216, 2012.
Inspire Record 1102908 DOI 10.17182/hepdata.68066

A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

2 data tables

Inclusive to exclusive dijet production ratio.

Mueller-Navelet to exclusive dijet production ratio.