The first measurement of the dijet transverse momentum balance $x_j$ in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV is presented. The $x_j$ observable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb$^{-1}$, were collected with the CMS detector in 2016. The $x_j$ distributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractions \x in the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios of $x_j$ distributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with both jets at the midrapidity regions.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with leading and subleading jets at midrapidity and forward regions, respectively.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with leading and subleading jets at midrapidity and backward regions, respectively.
A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.
Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.
Definition of the fiducial phase space at particle level with the light lepton candidates $(\ell=e,\mu)$, jets ($j$) and invariant mass of the opposite sign same flavour lepton pair ($m_{OSSF}^{ll}$).
Correlation matrix between the Normalisation Factors and the Nuisance Parameters (NP) in the fit using using both statistical and systematic uncertainties to data in all analysis regions.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ < $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ > $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ > $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ < $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ > $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ > $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.
Distribution of the normalized jet yield as a function of detector jet-$p_{T}$ in 2015 data and simulation. The lower panel shows the ratio between data and simulation.
Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron longitudinal momentum fraction, $z$, in two different ranges of jet-$p_{T}$.
Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron momentum transverse to the jet axis, $j_{T}$, in two different ranges of jet-$p_{T}$.
We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.
Parton jet $p_T$ vs $A_{LL}$ values with associated uncertainties.
Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology A.
Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology B.
A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.
Data measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.
Correlation coefficients $\rho_{i,j}$ for the statistical and systematic uncertainties between the $i$-th and $j$-th bin of the differential $A_E$ measurement as a function of the jet scattering angle $\theta_j$
The effects on the energy asymmetry of $1\sigma$ variations in its influencing nuisance parameters for the three $\theta_j$ bins. These are extracted from the samples of the posterior distribution with $\sigma_i^{(j)} = c_{ij}/\sqrt{c_{jj}}$ being the estimated shift of bin $i$ in conjunction with a shift $\Delta\theta_j$ of nuisance parameter $j$. The data statistical (Data stat.) uncertainty is obtained from running the unfolding with all nuisance parameters being fixed to their post-marginalised values, the MC statistical uncertainty on the response matrix ($t\bar{t}$ response MC stat.) is evaluated using a bootstrapping method from the covariance matrix of the ensemble of repeated unfolding results with varied response matrices. The $\gamma$ variations denote the statistical uncertainties of the background predictions in the corresponding bin of the $\Delta E$ vs $\theta_{j}$ distribution. The numbers appended to the $W$+jets PDF variations denote the corresponding NNPDF3.0 PDF sets.
We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP2 trigger conditions and the corresponding simulations.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP1 trigger conditions and the corresponding simulations.
Dijet yield versus the dijet $M_{inv}$ at the detector level and at the parton level. Table includes data for the JP1 and JP2 trigger conditions and the corresponding simulations.
Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.
The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.
The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.
Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level top quark rapidity