Single W boson production in electron-positron collisions is studied with the L3 detector at LEP. The data sample collected at a centre-of-mass energy of \sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1. Events with a single energetic lepton or two acoplanar hadronic jets are selected. Within phase-space cuts, the total cross-section is measured to be 0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation. Including our single W boson results obtained at lower \sqrt{s}, the WWgamma gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma = 0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13.
No description provided.
No description provided.
No description provided.
The measurements of Rb = sigma(e+e- -> bb~)/sigma(e+e- -> qq~) and of the b quark forward-backward charge asymmetry, A^b_fb, at centre-of-mass energies above the Z pole are described. The measurement of Rb is performed at \root{s} between 130 and 189 GeV using a b-tagging method that exploits the relatively large decay length of b-hadrons. The measurement of A^b_fb is performed using the large statistics event sample collected at \root{s}=189 GeV with a lepton-tag analysis based on the selection of prompt muons and electrons. The results at \root{s}=189 GeV are: Rb = 0.163 +/- 0.013 (stat.) +/- 0.005 (syst.), A^b_fb = 0.61 +/- 0.18 (stat.) +/- 0.09 (syst.).
No description provided.
No description provided.
The production of W-pairs is analysed in a data sample collected by ALEPH at a mean centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 174.2 pb^-1. Cross sections are given for different topologies of W decays into leptons or hadrons. Combining all final states and assuming Standard Model branching fractions, the total W-pair cross section is measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb. Using also the W-pair data samples collected by ALEPH at lower centre-of-mass energies, the decay branching fraction of the W boson into hadrons is measured to be BR (W > hadrons) = 66.97 +- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of the CKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst).
Total W+ W- production cross section.
Cross section for the fully leptonic decay channels.
Results of cross sections for decays into the different topological decay channels.
We search for anomalous trilinear gauge couplings in the ZZgamma and Zgammagamma vertices using data collected with the L3 detector at LEP at a centre-of-mass energy \sqrt{s}=189 GeV. No evidence is found and limits on these couplings and on new physics scales are derived from the analysis of the process e+e- -> Zgamma.
No description provided.
See text for Z(GAMMA) anomalous coupling definitions.
Cross sections for elastic photoproduction of J/Psi and Upsilon mesons are presented. For J/Psi mesons the dependence on the photon-proton centre-of-mass energy W_gammap is analysed in an extended range with respect to previous measurements of 26<=W_gammap<= 285 GeV. The measured energy dependence is parameterized as sigma_gammap proportional W_gammap^delta with delta=0.83+-0.07. The differential cross section dsigma/dt for J/Psi mesons is derived, its dependence on W_gammap and on t is analysed and the effective trajectory (in terms of Regge theory) is determined to be alpha(t)=(1.27+-0.05)+(0.08+-0.17)*t/GeV^2. Models based on perturbative QCD and on pomeron exchange are compared to the data.
The cross sections for the elastic photoproduction of J/PSI particles.
Differential cross section, DSIG/DT, for the elastic photoproduction of J/PSI particles.
The slope of the DSIG/DT distribution.
The production of hard di-jet events in photoproduction at HERA is dominated by resolved photon processes in which a parton in the photon with momentum fraction x_gamma is scattered from a parton in the proton. These processes are sensitive to the quark and gluon content of the photon. The differential di-jet cross-section dsigma/dlog(x_gamma) is presented here, measured in tagged photoproduction at HERA using data taken with the H1 detector, corresponding to an integrated luminosity of 7.2 pb^(-1). Using a restricted data sample at high transverse jet energy, E_(T,jet)>6 GeV, the effective parton density f_gamma,eff(x_gamma) = [q(x_gamma) + bar(q)(x_gamma) +9/4g(x_gamma)] in the photon in leading order QCD is measured down to x_gamma=0.05 from which the gluon density in the photon is derived.
The di-jet photoproduction cross section for ET > 4 GeV.
The di-jet photoproduction cross section for ET > 6 GeV after pedestal energy subtraction.
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.
Updated values of coupling constants and electroweak mixing angle.
Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.
Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.
The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.
Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.
Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.
The effective F2 measured in double-tag events as a function of X.
We report on measurements of the inclusive production rate of Sigma+ and Sigma0 baryons in hadronic Z decays collected with the L3 detector at LEP. The Sigma+ baryons are detected through the decay Sigma+ -> p pi0, while the Sigma0 baryons are detected via the decay mode Sigma0 -> Lambda gamma. The average numbers of Sigma+ and Sigma0 per hadronic Z decay are measured to be: < N_Sigma+ > + < N_Sigma+~ > = 0.114 +/- 0.011 (stat) +/- 0.009 (syst), < N_Sigma0 > + < N_Sigma0~ > = 0.095 +/- 0.015 (stat) +/- 0.013 (syst). These rates are found to be higher than the predictions from Monte Carlo hadronization models and analytical parameterizations of strange baryon production.
Inclusive production rates.
Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.
Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.
Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.
Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.