Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

22 data tables

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $p$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $d$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The $p_{T}$ dependencies of $v_{1}$ within $-0.1<y<0$ for $t$ in 10-40% mid-central Au+Au collisions at 3 GeV.

More…

Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

10 data tables

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

Centrality dependence of the proton cumulant ratios for Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 GeV. Protons are from $-0.5 < y < 0$ and $0.4 < p_{T} < 2.0$ GeV/$c$. Systematic uncertainties are represented by gray bars. Statistical uncertainties are smaller than marker size. CBWC is applied to all cumulant ratios. While open squares represent the data without the VFC correction, blue triangles and red circles are the results with VFC using the $\langle N_{\rm{part}} \rangle$ distributions from the UrQMD and Glauber models, respectively. UrQMD model results are represented as gold dashed line.

More…

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

32 data tables

Event plane resolution as a function of collision centrality from Au+Au collisions at $\sqrt{s_{NN}}$=3 (a), 27 and 54.4 GeV (b). In case of the 3 GeV collisions, $\Psi_{1}$ is used to determine the event plane resolutions for the first and second harmonic coefficients shown as $R_{11}$ and $R_{12}$ in left panel. In the 27 and 54.4 GeV collisions, $\Psi_{2}$ is used to evaluate the second order event plane resolution, see right panel. In all cases, the statistic uncertainties are smaller than symbol sizes.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

More…

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

6 data tables

The measured invariant-mass distributions of two classes of $\Lambda$-hyperon decays. The decay classes are defined using the scalar triple product $\left(\vec{p}_\Lambda\times\vec{p}_p^*\right)\cdot \vec{B}_{\rm STAR}$, which is positive for right decays and negative for left decays. The right decay class has a notably sharper invariant-mass distribution than the left decay class, and this is due to the effects of daughter tracks crossing in the STAR TPC with the STAR magnetic field anti-parallel to the lab frame's z direction. The opposite pattern is obtained by flipping the sign of the STAR magnetic field or by reconstructing $\bar{\Lambda}$ hyperons.

The signal polarizations extracted according to the restricted invariant-mass method as a function of $\phi_\Lambda - \phi_p^*$, for positive-rapidity $\Lambda$ hyperons. The sinusoidal behavior is driven by non-zero net $v_1$. The vertical shift corresponds to the vorticity-driven polarization; in collider mode, where the net $v_1$ is zero, this dependence on $\phi_\Lambda - \phi_p^*$ does not exist.

The integrated Global $\Lambda$-hyperon Polarization in mid-central collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The trend of increasing $\overline{P}_{\rm H}$ with decreasing $\sqrt{s_{\rm NN}}$ is maintained at this low collision energy. Previous experimental results are scaled by the updated $\Lambda$-hyperon decay parameter $\alpha_\Lambda=0.732$ for comparison with this result. Recent model calculations extended to low collision energy show disagreement between our data and AMPT and rough agreement with the 3-Fluid Dynamics (3FD) model. Previous measurements shown alongside our data can be found at: https://www.hepdata.net/record/ins750410?version=2; https://www.hepdata.net/record/ins1510474?version=1; https://www.hepdata.net/record/ins1672785?version=2; https://www.hepdata.net/record/ins1752507?version=2.

More…

Flow and interferometry results from Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 103 (2021) 034908, 2021.
Inspire Record 1809043 DOI 10.17182/hepdata.95903

The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.

12 data tables

Centrality selection for STAR FXT sqrt(sNN) = 4.5 GeV Au+Au collisions

Rapidity dependence of directed flow, v1(y), for protons with transverse momentum 0.4 < pT < 2.0 GeV/c from events with 10-25% centrality.

Rapidity dependence of directed flow, v1(y), for negative pions with transverse momentum pT > 0.2 GeV/c and total momentum magnitude |p| < 1.6 GeV/c from events within 10-30% centrality. Here, the BBC-based Event Plane method is used. Plotted error bars are statistical only, and systematic errors are of comparable size.

More…

Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

90 data tables

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

More…

Beam Asymmetry $\mathbf{\Sigma}$ for the Photoproduction of $\mathbf{\eta}$ and $\mathbf{\eta^{\prime}}$ Mesons at $\mathbf{E_{\gamma}=8.8}$GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 100 (2019) 052201, 2019.
Inspire Record 1749712 DOI 10.17182/hepdata.110166

We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.

3 data tables

Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}


Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ and $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV

The GlueX collaboration Al Ghoul, H. ; Anassontzis, E.G. ; Austregesilo, A. ; et al.
Phys.Rev.C 95 (2017) 042201, 2017.
Inspire Record 1511149 DOI 10.17182/hepdata.76745

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

2 data tables

Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.

Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.


A secondary peak at t = −1 (GeV/c)2 in high energy π-p charge exchange scattering

Sonderegger, P. ; Kirz, J. ; Guisan, O. ; et al.
Phys.Lett. 20 (1966) 75-78, 1966.
Inspire Record 1498686 DOI 10.17182/hepdata.75504

None

23 data tables

No description provided.

No description provided.

No description provided.

More…

Study of the process $e^+e^-\to\omega\eta\pi^0$ in the energy range $\sqrt{s} <2$ GeV with the SND detector

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 94 (2016) 032010, 2016.
Inspire Record 1471515 DOI 10.17182/hepdata.82577

The process $e^+e^-\to\omega\eta\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\to\omega\eta\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \to \omega\eta\pi^0$ is found to be $\omega a_0(980)$.

1 data table

The energy interval, integrated luminosity ($L$), number of selected events ($N$), estimated number of background events ($N_{bkg}$), detection efficiency for $e^+e^-\to\omega\eta\pi^0\to 7\gamma$ events ($\epsilon$), radiative correction ($\delta+1$), and $e^+e^-\to\omega\eta\pi^0$ Born cross section ($\sigma$). The shown cross-section errors are statistical. The systematic error is 4.2%. The 90% confidence level upper limits are listed for the first two energy intervals.


Measurement of $R_{\text{uds}}$ and $R$ between 3.12 and 3.72 GeV at the KEDR detector

Anashin, V.V. ; Aulchenko, V.M. ; Baldin, E.M. ; et al.
Phys.Lett.B 753 (2016) 533-541, 2016.
Inspire Record 1397002 DOI 10.17182/hepdata.76727

Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.

1 data table

Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.


Measurement of the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section with the CMD-3 detector at the VEPP-2000 collider

Shemyakin, D.N. ; Fedotovich, G.V. ; Akhmetshin, R.R. ; et al.
Phys.Lett.B 756 (2016) 153-160, 2016.
Inspire Record 1395968 DOI 10.17182/hepdata.76553

The process $e^+e^- \to K^+K^-\pi^+\pi^-$ has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider. Using about 24000 selected events, the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of $K^+K^-\pi^+\pi^-$ production dynamics has been performed.

1 data table

Center-of-mass energy, integrated luminosity, number of four-track events, number of three-track events, detection efficiency, radiative correction and Born cross section of the process $e^{+}e^{-} \to K^{+} K^{-} \pi^{+} \pi^{-}$. Errors are statistical only.


Investigation of the mechanism of double production of $\Delta_{1236}$ in the reaction $n p\rightarrow np_{\pi^{+}\pi^{-}}$ at energies 2-10 GeV

Gasparyan, A.P. ; Kopylova, D.K. ; Nikitin, A.V. ; et al.
Sov.J.Nucl.Phys. 21 (1975) 69-71, 1975.
Inspire Record 1392571 DOI 10.17182/hepdata.19132

None

2 data tables

No description provided.

EXOTIC (BACKWARD) EVENTS REMOVED BY SUBTRACTING IMITATION DOUBLE DELTA PRODUCTION DUE TO THE PROCESS N P --> N*(1600)+ <DEL++ PI-> N.


Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.


Inelastic Interactions Between 6.8-BeV/c $\pi^-$ Mesons and Nucleons

Birger, N.G. ; Wang, Kangchang ; Trka,Z. ; et al.
Sov.Phys.JETP 14 (1962) 1043-1052, 1962.
Inspire Record 1387796 DOI 10.17182/hepdata.17077

An analysis was made of 355 interactions between 1r- mesons and nucleons. The momentum and angular distributions of the secondary charged particles were measured. Information on 1r0 mesons produced in the interactions has been obtained. The experimental data are compared with the statistical theory. The results suggest that peripheral interactions may exist. In events of low multiplicity (two-prong cases) "one-meson" peripheral interactions play an important role, while in events of large multiplicity an important role is played by interactions not of the one-meson type, among which also central collisions are possible.

2 data tables

No description provided.

No description provided.


Pion Production in 650-MeV p-p Collisions

Guzhavin, V.M. ; Kliger, G.K. ; Kolganov, V.Z. ; et al.
Sov.Phys.JETP 19 (1964) 847-854, 1964.
Inspire Record 1387586 DOI 10.17182/hepdata.70070

The angular and energy distributions of pions produced by 650-MeV protons and pion-nucleon correlations were studied using a liquid hydrogen bubble chamber. The present investigation indicates that the experimental angular distributions of neutral and charged pions are consis- tent with the assumption of isotopic spin conservation. The contributions of rrN subsystem states with isospin T 11'N = 7' 2 and % are measured; the contribution of the latter is 72 ± 3%.

1 data table

No description provided.


Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Evidence for collective multi-particle correlations in pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 115 (2015) 012301, 2015.
Inspire Record 1345262 DOI 10.17182/hepdata.67530

The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in pPb and PbPb collisions over a wide pseudorapidity (eta) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at sqrt(s[NN])= 2.76 TeV, corresponding to an integrated luminosity of 2.5 inverse microbarns and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Delta[eta]) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a pPb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multi-particle dynamics of collision systems with a very small overlapping region.

14 data tables

The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.

The cumulant $c_2\{8\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.

The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in pPb collisions.

More…

Measurement of the $e^+e^- \to \eta\pi^+\pi^-$ cross section in the center-of-mass energy range 1.22--2.00 GeV with the SND detector at the VEPP-2000 collider

The SND collaboration Aulchenko, V.M. ; Achasov, M.N. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 91 (2015) 052013, 2015.
Inspire Record 1332929 DOI 10.17182/hepdata.73176

In the experiment with the SND detector at the VEPP-2000 $e^+e^-$ collider the cross section for the process $e^+e^-\to\eta\pi^+\pi^-$ has been measured in the center-of-mass energy range from 1.22 to 2.00 GeV. Obtained results are in agreement with previous measurements and have better accuracy. The energy dependence of the $e^+e^-\to\eta\pi^+\pi^-$ cross section has been fitted with the vector-meson dominance model. From this fit the product of the branching fractions $B(\rho(1450)\to\eta\pi^+\pi^-)B(\rho(1450)\to e^+e^-)$ has been extracted and compared with the same products for $\rho(1450)\to\omega\pi^0$ and $\rho(1450)\to\pi^+\pi^-$ decays. The obtained cross section data have been also used to test the conservation of vector current hypothesis.

1 data table

The c.m. energy ($\sqrt{s}$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N$), radiative-correction factor ($1 + \delta$), measured $e^+e^- \to \eta \pi^+\pi^-$ Born cross section ($\sigma_B$). For the number of events and cross section the statistical error is quoted. The systematic uncertainty on the cross section is 8.3% at $\sqrt{s}<1.45$ GeV, 5.0% at $1.45<\sqrt{s}<1.60$ GeV, and 7.8% at $\sqrt{s}>1.60$ GeV.


Study of the process $e^+e^-\to n\bar{n}$ at the VEPP-2000 $e^+e^-$ collider with the SND detector

Achasov, M.N. ; Barnyakov, A.Yu. ; Beloborodov, K.I. ; et al.
Phys.Rev.D 90 (2014) 112007, 2014.
Inspire Record 1321689 DOI 10.17182/hepdata.71416

The process $e^+e^-\to n\bar{n}$ has been studied at the VEPP-2000 $e^+e^-$ collider with the SND detector in the energy range from threshold up to 2 GeV. As a result of the experiment, the $e^+e^-\to n\bar{n}$ cross section and effective neutron form factor have been measured.

2 data tables

The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2011. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor.

The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2012. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor. NOTE: corrected an apparent typo in paper for second-last data point (1990 $\to$ 1960) to make the numbers consistent with the plot in Figure 9.


Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Measurement of Charged Pion Production Yields off the NuMI Target

The MIPP collaboration Paley, J.M. ; Messier, M.D. ; Raja, R. ; et al.
Phys.Rev.D 90 (2014) 032001, 2014.
Inspire Record 1291947 DOI 10.17182/hepdata.64417

The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 \times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.

1 data table

The production yields of PI+ and PI- and the ratio of these yields. The first uncertainty given on each value combines statistical uncertainties and systematic uncertainties from backgrounds.


Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…