The inclusive production of K̄ ∗ (890) and K̄ ∗ (1420) is studied in K̄ − p interactions at 10 and 16 GeV/ c . At 10 GeV/ c an enhancement in the ( K ̄ 0 π − ) mass distribution is found at 1.74 GeV, but no clear signal is seen at 16 GeV/ c . The fraction of K 0 ' s coming from decay of the K ∗ (890) or K ∗ (1420) is large, being (50 ± 6)% and (45 ± 5)% at 10 and 16 GeV/ c , respectively. The inclusive cross sections for K ∗− (890) and K ∗0 (890) production are almost constant with energy from 8 to 32 GeV/ c with values of 3.5 and 3.3 mb, respectively. The K ∗ (890) production cross section is studied as a function of transverse and longitudinal variables and found to derive mainly from fragmentation of the incident K − meson. The spectra of K 0 ' s resulting from the decay of K ∗ (890) are studied.
No description provided.
No description provided.
No description provided.
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for $\tan\beta$ between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. $R$-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Cross-section upper limits as a function of the $\tilde{\tau}_1$ mass for direct $\tilde{\tau}_1$ production and three values of $\tan\beta$. Expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties observed limits for three values of $\tan\beta$ and theoretical cross-section prediction for $\tan\beta=10$ with $\pm 1\sigma$ band.
Cross-section upper limits as a function of the $\tilde{\chi}_1$ mass for $\tilde{\tau}_1$ sleptons resulting from the decay of directly produced charginos and neutralinos in GMSB. Observed limits, expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties and theoretical cross-section prediction (dominated by $\tilde{\chi}^0_1 \tilde{\chi}^+_1$ production) with $\pm 1\sigma$ uncertainty. Depending on the hypothesis and to a small extent on $\tan\beta$, in these models, the chargino mass is 210 to 260 GeV higher than the neutralino mass.
Cross-section upper limits for various chargino masses in stable-chargino models. Expected limit with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, observed limit and theoretical cross-section prediction with $\pm 1\sigma$ uncertainties.
The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.
The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).
Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.
We present the results of a study of 1173 uniquely identified events of the K 0 π + p final state produced in 10 GeV/ c K + p interactions. This final state is dominated by the quasi two-body processes K + p → K 0 N ∗+ (890 p and K + p → K ∗+ (1420) p . The background is very low and there is little overlapping of resonance bands. We present cross sections, t -distributions and decay angular distributions for the contributing reaction channels. Dips are observed near t = 0 in the differential cross sections for all three processes.
BREIT-WIGNER FIT.
NUMERICAL VALUES TAKEN FROM THE COMPILATION LST7V2 FOX 72B.
No description provided.
We present an analysis of the K ππ system produced in 10 GeV/ c K + p interactions. We show that the low-mass enchancement between 1.2 and 1.4 GeV/ c 2 on the K ππ mass spectrum is predominantly 1 + throughout, give the relative amplitudes for the decay of this system into K ∗ (890) π and K ρ , and offer new evidence for the presence of two 1 + resonances in this mass region.
No description provided.
DIFFERENTIAL CROSS SECTION FOR THREE MASS BANDS IN Q-REGION. NORMALIZATION UNCERTAIN - NO UNITS FOR D(SIG)/DT GIVEN ON FIGURE. NUMERICAL VALUES TAKEN FROM THE COMPILATION LST7V2 FOX 72B. ERRORS ADDED AS 1/SQRT(EVENTS).
A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.
Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".
Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.
Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.
The inclusive production of Σ + (1385) and Σ − (1385) has been studied in K − p interactions at 10 and 10 and 16 GeV/ c . It is found that the cross sections for the reactions K − p → Σ ± (1385) + anything are approximately constant in the energy range form 10 to 32 GeV/ c , being ≈ 350 μ b for Σ + (1385) and ≈ 250 μ b for Σ − (1385). The d σ d p ⊥ 2 distributions for Σ ± (1385) fall off exponentially with increasing p ⊥ 2 , with sloped of about 3 (GeV/ c ) −2 . The d σ /d x distributions for Σ + (1385) and Σ − (1385) are markedly different: the production of Σ − (1385) is symmetrical forwards and backwards in the c.m.s.; for Σ + (1385), the distribution is the same as for Σ − (1385) in the forward direction, but presents a large excess of events in the backward direction. This indicates that for the production of both Σ + (1385) and Σ − (1385) the fragmentation of the incoming kaon is negligible. The fragmentation of the target proton is negligible for Σ − (1385), but it is important for Σ + (1385) and is responsible for the excess (∼100 μ b) of its cross section over that for Σ − (1385).
The joint decay distribution statistical tensors for the reaction π + p→ ϱ 0 Δ ++ have been measured as a function of t at 3.75 GeV/ c . From this data the amplitude components of the reaction were extracted using both t -independent and t -independent methods. The magnitudes of the amplitudes obtained from both methods are found to agree and appear to be insensitive to the fitting methods. The phases are not well determined in the t -independent method. A comparison is made with a similar analysis done at 7.1 GeV/c.