A search for Higgs boson pair production $pp \to hh$ is performed with 19.5 fb$^{-1}$ of proton--proton collision data at $\sqrt{s}=$ 8 TeV, which were recorded by the ATLAS detector at the Large Hadron Collider in 2012. The decay products of each Higgs boson are reconstructed as a high-momentum $b\bar{b}$ system with either a pair of small-radius jets or a single large-radius jet, the latter exploiting jet substructure techniques and associated $b$-tagged track-jets. No evidence for resonant or non-resonant Higgs boson pair production is observed. The data are interpreted in the context of the Randall--Sundrum model with a warped extra dimension as well as the two-Higgs-doublet model. An upper limit on the cross-section for $pp \to G^{*}_{\mathrm{KK}} \to hh \to b\bar{b} b\bar{b}$ of 3.2 (2.3) fb is set for a Kaluza--Klein graviton $G^{*}_{\mathrm{KK}}$ mass of 1.0 (1.5) TeV, at the 95\% confidence level. The search for non-resonant Standard Model $hh$ production sets an observed 95\% confidence level upper limit on the production cross-section $\sigma(pp \to hh \to b\bar{b}b\bar{b})$ of 202 fb, compared to a SM prediction of $\sigma(pp \to hh \to b\bar{b}b\bar{b}) = 3.6 \pm 0.5$ fb.
1D histogram of event yields as a function of reconstructed four-jet mass for the resolved analysis. The lower edge of the mass bin is given.
1D histogram of event yields as a function of reconstructed two-jet mass for the boosted analysis. The lower edge of the mass bin is given.
The observed 95\% C.L. limit for $pp\rightarrow G^{*}_{KK}\rightarrow hh\rightarrow b\bar{b}b\bar{b}$ in the bulk RS model with $k/\bar{M}_{Pl} = 1$, as a function of resonance mass.
Measurements of differential cross-sections for $J/\psi$ production in p+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb$^{-1}$. The $J/\psi$ mesons are reconstructed in the dimuon decay channel over the transverse momentum range $8<p_{\mathrm{T}}<30$ GeV and over the center-of-mass rapidity range $-2.87<y^{*}<1.94$. Prompt $J/\psi$ are separated from $J/\psi$ resulting from $b$-hadron decays through an analysis of the distance between the $J/\psi$ decay vertex and the event primary vertex. The differential cross-section for production of nonprompt $J/\psi$ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results constrain the kinematic dependence of nuclear modifications of charmonium and $b$-quark production in p+Pb collisions.
Measured non-prompt fraction.
Measured non-prompt fraction.
Measured prompt J/psi differential cross-section multiplied by branching ratio. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.
A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.
Selection efficiency x Acceptance for a Z' resonance.
Selection efficiency x Acceptance for a KK gluon resonance.
Selection efficiency x Acceptance for a KK graviton resonance.
Production of exclusive dijets in diffractive deep inelastic $e^\pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $\gamma^*-p$ centre-of-mass energies in the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $\beta$ and $\phi$, where $\beta=x/x_{\rm I\!P}$, $x$ is the Bjorken variable and $x_{\rm I\!P}$ is the proton fractional longitudinal momentum loss. The angle $\phi$ is defined by the $\gamma^*-$dijet plane and the $\gamma^*-e^\pm$ plane in the rest frame of the diffractive final state. The $\phi$ cross section is measured in bins of $\beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.
Differential cross-section $d\sigma/d\beta$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV^2$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation also given in the table.
Differential cross-section $d\sigma/d\phi$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation given in the table.
Results of the fit to the cross-section $d\sigma/d\phi$ in bins of $\beta$. The fitted function is proportional to $(1+A \rm{cos}2\phi)$. The uncertainty includes both statistical and systematical contributions (see text of paper).
Light-particle emission from Au+Au collisions has been studied in the bombarding-energy range 100-250 A·MeV, using DeltaE- ER telescopes in coincidence with the FOPI detector in its phase I configuration. Center-of-mass energy spectra have been measured for Z = 1,2 isotopes emitted in central collisions at CM polar angles between 60° and 90°. Evidence for a collective expansion is reported, on the basis of the mean kinetic energies of hydrogen isotopes. Comparison is presented with statistical calculations (WIX code). For CM kinetic energy spectra, fair agreement is found between data and a recently developed transport model.
No description provided.
No description provided.
No description provided.
We present a measurement of the $W$-boson-pair production cross section in $p\bar{p}$ collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity and leading-jet energy. The $W^{+}W^{-}$ cross section is measured in the final state comprising two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using data collected by the CDF experiment corresponding to $9.7~\rm{fb}^{-1}$ of integrated luminosity, a total of $3027$ collision events consistent with $W^{+}W^{-}$ production are observed with an estimated background contribution of $1790\pm190$ events. The measured total cross section is $\sigma(p\bar{p} \rightarrow W^{+}W^{-}) = 14.0 \pm 0.6~(\rm{stat})^{+1.2}_{-1.0}~(\rm{syst})\pm0.8~(\rm{lumi})$ pb, consistent with the standard model prediction.
Measurements and predictions of $\sigma(p\bar{p} \rightarrow W^{+}W^{-} + \mathrm{jets})$. Values are given inclusively and differentially as functions of jet multiplicity and jet-transverse energy.
Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.
Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.
We measure the particle-level forward-backward production asymmetry in $b\bar{b}$ pairs with masses $m(b\bar{b})$ larger than 150 GeV/$c^2$, using events with hadronic jets and employing jet charge to distinguish $b$ from $\bar{b}$. The measurement uses 9.5/fb of ppbar collisions at a center of mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of $m(b\bar{b})$ is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV/$c^2$ whereas a model containing a heavier 345 GeV/$c^2$ axigluon is not excluded.
Values of maximum a posteriori signal asymmetry as a function of $b\bar{b}$ mass. The error bars represent the 68% credible intervals.
We report the first observation of the Dalitz decay $\eta' \to \gamma e^+e^-$, based on a data sample of 1.31 billion $J/\psi$ events collected with the BESIII detector. The $\eta'$ mesons are produced via the $J/\psi \to \gamma \eta'$ decay process. The ratio $\Gamma(\eta' \to \gamma e^+ e^-)/\Gamma(\eta'\to\gamma\gamma)$ is measured to be $(2.13\pm0.09(\text{stat.})\pm0.07(\text{sys.}))\times10^{-2}$. This corresponds to a branching fraction ${\cal B}(\eta' \to \gamma e^+e^-)= (4.69 \pm0.20(\text{stat.})\pm0.23(\text{sys.}))\times10^{-4}$. The transition form factor is extracted and different expressions are compared to the measured dependence on the $e^+e^-$ invariant mass. The results are consistent with the prediction of the Vector Meson Dominance model.
Fitted ($n^{\text{obs}}_i$) and efficiency-corrected ($n^{\text{corr}}_i$) signal yields for the eight $M(e^+e^-)$ bins, and ratios ($r_i$). The uncertainties are statistical only.
Values of $|F|^2$ in each $M(e^+e^-)$ bin.
Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}$. The measurements are compared to state-of-the-art predictions.
Measured cross section in bins of $p_{\rm{T}}^{\rm{H}}$.
Measured cross section in bins of $|y^{\rm{H}}|$.
Measured cross section in bins of $N_{\rm{jets}}$.