Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. We extract a $v_2$-independent and $m_{\rm inv}$-averaged signal $\Delta\gamma_{\rm sig}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$ =(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$, within pion $p_{T}$ = 0.2 - 0.8~\gevc and averaged over pseudorapidity ranges of $-1 < \eta < -0.05$ and $0.05 < \eta < 1$. This represents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result, at $95\%$ confidence level for the $m_{\rm inv}$-integrated CME contribution.
The $m_{\rm inv}$ dependences of the OS and SS pion pair multiplicities in 20-50$\%$ Au+Au collisions at 200 GeV.
The $m_{\rm inv}$ dependences of the $\gamma_{OS}$, $\gamma_{SS}$ in 20-50$\%$ Au+Au collisions at 200 GeV.
$m_{\rm inv}$ dependences of the relative excess of OS over SS pion pairs in 20-50$\%$ Au+Au collisions at 200 GeV.
Flow harmonics ($\textit{v}_{n}$) of the Fourier expansion for the azimuthal distributions of hadrons are commonly employed to quantify the azimuthal anisotropy of particle production relative to the collision symmetry planes. While lower order Fourier coefficients ($\textit{v}_{2}$ and $\textit{v}_{3}$) are more directly related to the corresponding eccentricities of the initial state, the higher-order flow harmonics ($\textit{v}_{n>3}$) can be induced by a mode-coupled response to the lower-order anisotropies, in addition to a linear response to the same-order anisotropies. These higher-order flow harmonics and their linear and mode-coupled contributions can be used to more precisely constrain the initial conditions and the transport properties of the medium in theoretical models. The multiparticle azimuthal cumulant method is used to measure the linear and mode-coupled contributions in the higher-order anisotropic flow, the mode-coupled response coefficients, and the correlations of the event plane angles for charged particles as functions of centrality and transverse momentum in Au+Au collisions at nucleon-nucleon center-of-mass energy \roots = 200 GeV. The results are compared to similar LHC measurements as well as to several viscous hydrodynamic calculations with varying initial conditions.
3-particle integrated correlators
The integrated $v_{4}$ and $v_{5}$
The integrated $\chi_{4,22}$, $\rho_{4,22}$, $\chi_{5,23}$ and $\rho_{5,23}$
We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The energy dependence of the $v_1(y)$ slope, $dv_{1}/dy|_{y=0}$, for deuterons, where $y$ is the rapidity, is extracted for semi-central collisions (10-40\% centrality) and compared to that of protons. While the $v_1(y)$ slopes of protons are generally negative for $\sqrt{s_{NN}} >$ 10 GeV, those for deuterons are consistent with zero, a strong enhancement of the $v_1(y)$ slope of deuterons is seen at the lowest collision energy (the largest baryon density) at $\sqrt{s_{NN}} =$ 7.7 GeV. In addition, we report the transverse momentum dependence of $v_1$ for protons and deuterons. The experimental results are compared with transport and coalescence models.
The 1st-order event plane ($\Psi_{1}$) resolution as a function of centrality of Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The $\Psi_{1}$ is reconstructed with the BBC detectors and its resolution is estimated by the correlation of sub-$\Psi_{1}$ from east BBC and west BBC. Data presented later (10-40\% centrality) is indicated by the dashed-line box.
Rapidity dependene of $v_1$ for protons(open squares) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only
Rapidity dependene of $v_1$ for deuterons(solid circles) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only
The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.
Centrality selection for STAR FXT sqrt(sNN) = 4.5 GeV Au+Au collisions
Rapidity dependence of directed flow, v1(y), for protons with transverse momentum 0.4 < pT < 2.0 GeV/c from events with 10-25% centrality.
Rapidity dependence of directed flow, v1(y), for negative pions with transverse momentum pT > 0.2 GeV/c and total momentum magnitude |p| < 1.6 GeV/c from events within 10-30% centrality. Here, the BBC-based Event Plane method is used. Plotted error bars are statistical only, and systematic errors are of comparable size.
Charged particle multiplicity distributions in positron-proton deep inelastic scattering at a centre-of-mass energy $\sqrt{s}=319$ GeV are measured. The data are collected with the H1 detector at HERA corresponding to an integrated luminosity of $136$ pb${}^{-1}$. Charged particle multiplicities are measured as a function of photon virtuality $Q^2$, inelasticity $y$ and pseudorapidity $\eta$ in the laboratory and the hadronic centre-of-mass frames. Predictions from different Monte Carlo models are compared to the data. The first and second moments of the multiplicity distributions are determined and the KNO scaling behaviour is investigated. The multiplicity distributions as a function of $Q^2$ and the Bjorken variable $x_{\rm Bj}$ are converted to the hadron entropy $S_{\rm hadron}$, and predictions from a quantum entanglement model are tested.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in 4x4 kinematic bins of $Q^2$ and $y$.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in three overlapping pseudorapidity ranges $-1.2<\eta_{lab}\vert<0.2$, $-0.5<\eta_{lab}\vert<0.9$ and $0.2<\eta_{lab}\vert<1.6$, subdivided into 4x4 kinematic bins of $Q^2$ and $y$.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ with the additional restriction to select only particles from the current region of the Breit frame $0<\eta^{*}<4$, in 4x4 kinematic bins of $Q^2$ and $y$.
Global polarization of $\Xi$ and $\Omega$ hyperons has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The measurements of the $\Xi^-$ and $\bar{\Xi}^+$ hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay $\Xi\rightarrow\Lambda+\pi$, as well as by measuring the polarization of the daughter $\Lambda$-hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over $\Xi^-$ and $\bar{\Xi}^+$, is measured to be $\langle P_\Xi \rangle = 0.47\pm0.10~({\rm stat.})\pm0.23~({\rm syst.})\,\%$ for the collision centrality 20%-80%. The $\langle P_\Xi \rangle$ is found to be slightly larger than the inclusive $\Lambda$ polarization and in reasonable agreement with a multi-phase transport model (AMPT). The $\langle P_\Xi \rangle$ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of $\Omega$, $\langle P_\Omega \rangle = 1.11\pm0.87~({\rm stat.})\pm1.97~({\rm syst.})\,\%$ was obtained by measuring the polarization of daughter $\Lambda$ in the decay $\Omega \rightarrow \Lambda + K$, assuming the polarization transfer factor $C_{\Omega\Lambda}=1$.
$\Xi$ and $\Omega$ global polarization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.
The energy dependence of $\Lambda$ and $\bar{\Lambda}$ global polarization. Note that the results from previous measurements are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732 and $\alpha_{\bar{\Lambda}}$=-0.758. The original data can be found in <a href="https://www.hepdata.net/record/ins1510474">this page</a>.
Centrality dependence of $\Xi$ global poalrization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.
We report on the first measurement of charm-strange meson $D_s^{\pm}$ production at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV from the STAR experiment. The yield ratio between strange ($D_{s}^{\pm}$) and non-strange ($D^{0}$) open-charm mesons is presented and compared to model calculations. A significant enhancement, relative to a PYTHIA simulation of $p$+$p$ collisions, is observed in the $D_{s}^{\pm}/D^0$ yield ratio in Au+Au collisions over a large range of collision centralities. Model calculations incorporating abundant strange-quark production in the quark-gluon plasma (QGP) and coalescence hadronization qualitatively reproduce the data. The transverse-momentum integrated yield ratio of $D_{s}^{\pm}/D^0$ at midrapidity is consistent with a prediction from a statistical hadronization model with the parameters constrained by the yields of light and strange hadrons measured at the same collision energy. These results suggest that the coalescence of charm quarks with strange quarks in the QGP plays an important role in $D_{s}^{\pm}$ meson production in heavy-ion collisions.
The $KK\pi$ invariant mass distribution (Counts per 8 MeV/$c^{2}$ bin) for right-sign combinations in 0-80% Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV.
$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 0-10% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.5 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.
$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 10-40% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.0 < $p_T$ < 2.0 GeV/c, 2.0 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.
The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (PbPb) collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV per nucleon pair, using the decay chain X(3872) $\to$ J$/\psi\, \pi^+\pi^- \to$ $\mu^+\mu^-\pi^+\pi^-$. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb$^{-1}$. The measurement is performed in the rapidity and transverse momentum ranges $|y|$ $\lt$ 1.6 and 15 $\lt$ $p_\mathrm{T}$ $\lt$ 50 GeV$/c$. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to $\psi$(2S) yield ratio is found to be $\rho^\mathrm{PbPb} = $ 1.08 $\pm$ 0.49 (stat) $\pm$ 0.52 (syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.
The yield ratio $\rho^{\mathrm{PbPb}}$ of prompt X(3872) over $\psi(\mathrm{2S})$ production in PbPb collisions at 5.02 TeV
We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP2 trigger conditions and the corresponding simulations.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP1 trigger conditions and the corresponding simulations.
Dijet yield versus the dijet $M_{inv}$ at the detector level and at the parton level. Table includes data for the JP1 and JP2 trigger conditions and the corresponding simulations.