Date

Version 2
Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

The e+ e- ---> pi+ pi- pi+ pi-, K+ K- pi+ pi-, and K+ K- K+ K- cross sections at center-of-mass energies 0.5-GeV to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 71 (2005) 052001, 2005.
Inspire Record 676691 DOI 10.17182/hepdata.22111

We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.

3 data tables

Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- K+ K- cross sections. The errors are statistical only.


Study of e+ e- ---> pi+ pi- pi0 process using initial state radiation with BABAR

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 70 (2004) 072004, 2004.
Inspire Record 656680 DOI 10.17182/hepdata.41884

The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.

1 data table

The measured 3PI mass spectrum calculated for a 25 MeV bin size.


Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Observation of orbitally excited B mesons in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 072002, 2001.
Inspire Record 511161 DOI 10.17182/hepdata.42083

We measure the relative rate of production of orbitally excited (L=1) states of B mesons (B**) by observing their decays into Bπ±. We reconstruct B mesons through semileptonic decay channels using data collected in pp¯ collisions at s=1.8TeV. The fraction of light B mesons that are produced as L=1B** states is measured to be 0.28±0.06(stat)±0.03(syst). We also measure the collective mass of the B** states, and quantify the result by quoting the (model-dependent) mass of the lowest B** state to be m(B1)=5.71±0.02GeV/c2.

1 data table

FD is considered as a quark fragmentation fraction.


Inclusive production of D*+- mesons in photon photon collisions at s**(1/2)(ee) = 183-GeV and 189-GeV and a first measurement of F2(c)(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 579-596, 2000.
Inspire Record 510531 DOI 10.17182/hepdata.35045

The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2

7 data tables

Differential PT distribution for anti-tagged events for both D* decay modesand combined.

Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.

Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.

More…

Measurement of B --> rho l nu decay and |V(ub)|.

The CLEO collaboration Behrens, B.H. ; Ford, William T. ; Gritsan, A. ; et al.
Phys.Rev.D 61 (2000) 052001, 2000.
Inspire Record 500781 DOI 10.17182/hepdata.52337

Using a sample of 3.3 million Upsilon(4S) -> BBbar events collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR), we measure the branching fraction for B -> rho l nu, |V_ub|, and the partial rate (Delta Gamma) in three bins of q^2 = (p_B-p_rho)^2. We find B(B^0 -> rho^- l^+ nu)=(2.69 +- 0.41^+0.35_-0.40 +- 0.50) 10^-4, |V_ub|=(3.23 +- 0.24^+0.23_-0.26 +- 0.58) 10^-3, Delta Gamma (0 < q^2 < 7 GeV^2/c^4) =(7.6 +- 3.0 ^+0.9_-1.2 +- 3.0) 10^-2 ns^-1, Delta Gamma (7 < q^2 < 14 GeV^2/c^4) =(4.8 +- 2.9 ^+0.7_-0.8 +- 0.7) 10^-2 ns^-1, and Delta Gamma (14 < q^2 < 21 GeV^2/c^4) = (7.1 +- 2.1^+0.9_-1.1 +- 0.6)10^-2 ns^-1. The quoted errors are statistical, systematic, and theoretical. The method is sensitive primarily to B -> rho l nu decays with leptons in the energy range above 2.3 GeV. Averaging with the previously published CLEO results, we obtain B(B^0 -> rho^- l^+ nu) = (2.57 +- 0.29^+0.33_-0.46 +- 0.41) 10^-4 and |V_{ub}| = (3.25 +- 0.14 ^+0.21_-0.29 +- 0.55) 10^-3.

1 data table

VCB is the V-CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix element. LEPTON+- stands for E+- or MU+-.


Measurements of the QED structure of the photon.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 409-425, 1999.
Inspire Record 495378 DOI 10.17182/hepdata.49315

The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5< Q**2 < 30 GeV**2 and 1.5< P**2 < 20 GeV**2, where Q**2 and P**2 are the negative values of the four-momentum squared of the two photons such that Q**2 > P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Dijet production in photon-photon collisions at S**(1/2)(ee) = 161-GeV and 172-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 10 (1999) 547-561, 1999.
Inspire Record 474009 DOI 10.17182/hepdata.49386

Di-jet production is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies 161 and 172 GeV. The jets are reconstructed using a cone jet finding algorithm. The angular distributions of direct and double-resolved processes are measured and compared to the predictions of leading order and next-to-leading order perturbative QCD. The jet energy profiles are also studied. The inclusive two-jet cross-section is measured as a function of transverse energy and rapidity and compared to next-to-leading order perturbative QCD calculations. The inclusive two-jet cross-section as a function of rapidity is compared to the prediction of the leading order Monte Carlo generators PYTHIA and PHOJET. The Monte Carlo predictions are calculated with different parametrisations of the parton distributions of the photon. The influence of the `underlying event' has been studied to reduce the model dependence of the predicted jet cross-sections from the Monte Carlo generators.

14 data tables

Differential 2-jet cross section as a function of cos(theta*) for 'double-resolved' and 'direct' events.

No description provided.

No description provided.

More…