The precise determination of the CKM matrix element $\left| V_{cb}\right|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed $B$-meson, using 772 million $e^+ \, e^- \to \Upsilon(4S) \to B \bar B$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. We measure the total branching fraction $\mathcal{B}( \bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell ) = \left(4.95 \pm 0.11 \pm 0.22 \right) \times 10^{-2}$, where the errors are statistical and systematic respectively. The value of $\left|V_{cb} \right|$ is determined to be $\left( 37.4 \pm 1.3 \right) \times 10^{-3}$. Both results are in good agreement with current world averages.
The unfolded differential rate as a function of $w$.
The unfolded differential rate as a function of $\cos\theta_\nu$.
The unfolded differential rate as a function of $\cos\theta_\ell$.
We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.
Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.
We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.
Cross section measurement for PHI(1020).
Mass measurement for PHI(1020).
Measurement of the PHI(1020) width.
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
The Beijing Spectrometer (BES) experiment has observed purely leptonic decays of the Ds meson in the reaction e+e−→Ds+Ds− at a c.m. energy of 4.03 GeV. Three events are observed in which one Ds decays hadronically to φπ, K¯*0K, or K¯0K, and the other decays leptonically to μνμ or τντ. With the assumption of μ−τ universality, values of the branching fraction, B(Ds→μνμ)=(1.5−0.6−0.2+1.3+0.3)%, and the Ds pseudoscalar decay constant, fDs=(4.3−1.3−0.4+1.5+0.4)×102 MeV, are obtained.
No description provided.
In this table CONST is the pseudoscalar decay constant, f_[D/S].