Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table match query

No description provided.


MEASUREMENT OF N P AND P P ASYMMETRY WITH AN ACCELERATED POLARIZED DEUTERON BEAM FROM 725-MEV TO 1000-MEV PER NUCLEON

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Nucl.Phys.A 444 (1985) 597-610, 1985.
Inspire Record 222367 DOI 10.17182/hepdata.37022

The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Evidence for Spin Effects in $p p$ Elastic Scattering at 150-{GeV}/$c$

Fidecaro, G. ; Fidecaro, M. ; Nurushev, S. ; et al.
Phys.Lett.B 76 (1978) 369-373, 1978.
Inspire Record 130230 DOI 10.17182/hepdata.27444

Proton elastic scattering off a polarized proton target has been measured at 150 GeV/ c , in the |; t |-range 0.2–3.0 GeV 2 . The results on polarization and differential cross section are presented.

2 data tables match query

No description provided.

No description provided.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Absolute measurement of the p+p analyzing power at 183 MeV

von Przewoski, B. ; Meyer, H.O. ; Pancella, P.V. ; et al.
Phys.Rev.C 44 (1991) 44-49, 1991.
Inspire Record 327386 DOI 10.17182/hepdata.26154

The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////).


Elastic and quasi-elastic p p scattering in Li-6_H and Li-6_D targets between 1.1-GeV and 2.4-GeV.

Ball, J. ; Allgower, C.E. ; Beddo, M. ; et al.
Eur.Phys.J.C 11 (1999) 51-67, 1999.
Inspire Record 505045 DOI 10.17182/hepdata.43403

A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and

25 data tables match query

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.

More…

Measurement of the p p analyzing power in the vicinity of 2.20-GeV.

Ball, J. ; Beddo, M. ; Bedfer, Y. ; et al.
Eur.Phys.J.C 10 (1999) 409-413, 1999.
Inspire Record 510350 DOI 10.17182/hepdata.43331

The pp elastic scattering analyzing power was measured in small energy steps in the vicinity of the accelerator depolarizing resonance $\gamma G= 6 $ at 2.202 GeV.

6 data tables match query

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

More…

Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies

Allgower, C.E. ; Ball, J. ; Beddo, M.E. ; et al.
Phys.Rev.C 60 (1999) 054002, 1999.
Inspire Record 508562 DOI 10.17182/hepdata.25565

Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.

20 data tables match query

Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.

Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.

Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.

More…

Angular dependence of the p p elastic scattering analyzing power between 0.8-GeV and 2.8-GeV. 1. Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 60 (1999) 054001, 1999.
Inspire Record 508563 DOI 10.17182/hepdata.25566

Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.

21 data tables match query

Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.

Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.

Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.

More…