Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Data read from graph.. Event distributions uncorrected for angular acceptance and the efficiency with energy of the detector RE = GAMMA GAMMA --> PI0 PI0.
Data read from graph.
Data read from graph.. Event distributions uncorrected for angular acceptance and the efficiency with energy of the detector RE = GAMMA GAMMA --> PI0 PI0.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.
The process e+e- to pi+ pi- pi+ pi- pi0 has been studied in the center of mass energy range 1280 -- 1380 MeV using 3.0 1/pb of data collected with the CMD-2 detector in Novosibirsk. Analysis shows that the cross section of the five pion production is dominated by the contributions of the eta pi+pi- and omega pi+pi- intermediate states.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
The cross section of the process e+ e- ---> eta gamma has been measured in the 600-1380 MeV c.m. energy range with the CMD-2 detector. The following branching ratios have been determined: B(rho ---> eta gamma) = (3.28 +- 0.37 +- 0.23) 10^{-4}, B(omega ---> eta gamma) = (5.10 +- 0.72 +- 0.34) 10^{-4}, B(phi --> eta gamma) = (1.287 +- 0.013 +- 0.063) 10^{-2}. Evidence for the rho'(1450) ---> eta gamma decay has been obtained for the first time.
The measured Born cross section for the ETA GAMMA final state.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.
We present the first data on photon-photon annihilation into hadrons for CM energies > 1 GeV obtained with the detector PLUTO at the e + e − storage ring PETRA. Cross sections are extracted using an inelastic eγ scattering formalism. The results are compared to expectations from Regge-like models.
DEPENDENCE OF CROSS SECTION FOR ELECTRON-PHOTON SCATTERING (ANALOGOUS TO HAND'S FORMULA) ON VISIBLE HADRONIC ENERGY, CALCULATED BY TAKING PION MASSES FOR ALL CHARGED PARTICLES.
We present new high statistics data on hadron production in photon-photon reactions. The data are analyzed in terms of an electron-photon scattering formalism. The dependence of the total cross section of Q 2 , the four-momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector-Meson Dominance and the quark model.
DEPENDENCE ON VISIBLE HADRONIC INVARIANT MASS.
We present a measurement of the cross section for the reaction e + e − → e + e − π + π − π + π − at SPEAR. This channel is found to be large and dominated by the process γγ → ϱ 0 ϱ 0 → π + π − π + π − . The cross section, which is small just above the four-pion threshold, exhibits a large enhancement near the ϱ 0 ϱ 0 threshold.
Axis error includes +- 0.0/0.0 contribution (THE QUOTED ERRORS INCLUDE VARIOUS SYSTEMATIC ERRORS ADDED QUADRATICALLY).
The processes e+ e- --> eta gamma, e+ e- --> pi0 gamma --> 3 gamma have been studied in the c.m. energy range 600--1380 MeV with the CMD-2 detector. The following branching ratios have been determined: Br(rho --> eta gamma) = (3.21 +- 1.39 +- 0.20)x 10^{-4}; Br(omega --> eta gamma) = (4.44 + 2.29 -1.83 +- 0.28)x 10^{-4}; Br(phi --> eta gamma) = (1.373 +- 0.014 +- 0.085)x 10^{-2}; Br(rho --> pi0 gamma) = (6.21 +1.28 - 1.18 +- 0.39)x 10^{-4}; Br(omega --> pi0 gamma) = (9.06 +- 0.20 +- 0.57)x 10^{-2}; Br(phi --> pi0 gamma) = (1.258 +- 0.037 +- 0.077)x 10^{-3};
Born cross section for the process E+ E- --> ETA GAMMA.
Born cross section for the process E+ E- --> PI0 GAMMA.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.