Date

Collaboration

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 82 (2010) 034909, 2010.
Inspire Record 839470 DOI 10.17182/hepdata.101353

Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.

4 data tables

The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

More…

Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

20 data tables

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

27 data tables

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 0-20%.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…

J/psi production vs centrality, transverse momentum, and rapidity in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232301, 2007.
Inspire Record 731670 DOI 10.17182/hepdata.57282

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities 2.2 < y < 2.2 in Au+Au collisions at sqrt(s_NN) = 200 GeV. The J/psi invariant yield and nuclear modification factor R_AA as a function of centrality, transverse momentum and rapidity are reported. A suppression of J/psi relative to binary collision scaling of proton-proton reaction yields is observed. Models which describe the lower energy J/Psi data at the Super Proton Synchrotron (SPS) invoking only J/psi destruction based on the local medium density would predict a significantly larger suppression at RHIC and more suppression at mid rapidity than at forward rapidity. Both trends are contradicted by our data.

13 data tables

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at mid rapidity :,-0.35<y<0.35 An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at forward rapidities : absolute value of y belongs to [1.2;2.2] An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

Mean PT^2 values for different bins of centrality, at mid rapidities :-0.35<y<0.35,.

More…

Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172301, 2007.
Inspire Record 731668 DOI 10.17182/hepdata.57287

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons from heavy flavor (charm and bottom) decays for 0.3 < p_T < 9 GeV/c at midrapidity (|y| < 0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV. The nuclear modification factor R_AA relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC. A large azimuthal anisotropy, v_2, with respect to the reaction plane is observed for 0.5 < p_T < 5 GeV/c indicating non-zero heavy flavor elliptic flow. Both R_AA and v_2 show a p_T dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R_AA(p_T) and v_2(p_T) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

10 data tables

Invariant yield of electrons from heavy-flavor decays for 0-10% central collisions, versus PT.

Invariant yield of electrons from heavy-flavor decays for 10-20% central collisions, versus PT.

Invariant yield of electrons from heavy-flavor decays for 20-40% central collisions, versus PT.

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in minimum bias D+AU collisions versus $p_{T}$.

More…

Identified hadron spectra at large transverse momentum in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 637 (2006) 161-169, 2006.
Inspire Record 709170 DOI 10.17182/hepdata.85695

We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| &lt; 0.5) over the range of 0.3 &lt; pT &lt; 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 &lt; pT &lt; 5 GeV/c.

26 data tables

Transverse momentum distribution for $\pi^+$ production in d+Au minbias events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in p+p NSD events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in d+Au collisions with centrality 0-20% in the mid rapidity region, $|y|<0.5$.

More…