We have measured the Λ° polarization in π − p→ K°Λ° at 5 GeV / c , using a data sample of 3709 events. The polarization is positive for small t , passes through zero near t = −0.3 (GeV/ c ) 2 , and becomes large and negative at larger t , consistent with a value of −1.0 for t between −0.7 and −1.6(GeV/ c ) 2 .
THE AUTHORS FEEL THAT THE POLARIZATIONS > 1 IN ABSOLUTE VALUE ARE PROBABLY DUE TO STATISTICS RATHER THAN SYSTEMATIC ERRORS.
We report on an experiment to obtain differential cross sections for K+p elastic scattering in the vicinity of the possible exotic baryon, the Z1*(1900). The differential cross sections are based on typically 70 000 selected events in the angular region −0.9≤cosθc.m.≤0.9 at each of 22 momenta from 0.865 to 2.125 GeV/c. The data are intended for use in partial-wave analysis to search for the Z1*.
No description provided.
No description provided.
No description provided.
Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.
No description provided.
No description provided.
No description provided.
Differential cross sections for π±p, K±p, pp, and p¯p elastic scattering were measured at 3, 3.65, 5, and 6 GeVc for momentum transfers from 0.03 to 1.5 GeV2 using the Argonne effective mass spectrometer. Particular attention was paid to the relative particle-antiparticle normalization. The crossover points are consistent with no energy dependence, average values being 0.14 ± 0.03, 1.190 ± 0.005, and 0.160 ± 0.007 GeV2 for π's, K's, and protons, respectively.
No description provided.
We have measured the differential cross sections for the associated-production reactions π−p→K0Λ0 and π−p→K0Σ0 at 3, 4, 5, and 6 GeV/c, with a total of over 40 000 events. We find that both reactions have exponential forward peaks for −t≲0.4 (GeV/c)2, with no indication of forward-direction flattening or turnover; the slopes of the forward peaks show little if any variation with momentum; and the two cross sections are equal within experimental error from −t=1.2 (GeV/c)2 out to at least −t=2.0 (GeV/c)2.
INTERCEPT AND SLOPE FROM FIT TO D(SIG)/DT (PRESUMABLY FOR -TP < ABOUT 0.4 GEV**2).
No description provided.
No description provided.
Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
Cross sections for π − p→n π o at 5.9, 10.1 and 13.8 GeV/ c incident momentum are presented in the angular region from 180 o to u , the crossed four-momentum transfer squared, of −2(GeV) 2 and the energy dependence is discussed. The cross section for π − p→n η o integrated over the same angular region at 5.9 GeV/ c is also presented.
No description provided.
No description provided.
No description provided.
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.