This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (\={t}) in the emu continuum using 2.1/fb of data collected by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95% C.L. are calculated as a function of the scalar top mass (m_{\={t}}). The upper limits on the production cross section for pp->emuX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_{\={t}}=95 GeV to 30 fb for m_{\={t}}=1000 GeV.
The observed E-MU invariant mass distribution plus SM background and signal predicitons for a n stop mass of 95 GeV.
Information about the signal samples used.
The ratios of the observed and expected upper cross section limits to the theoretical cross sections as a function of the scalar top mass.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.
Cross section for the production of W bosons for different inclusive jet multiplicities.
Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.
Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. The uncertainties are applied symmetrically, though the cross section cannot go below zero in the first bin.
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |eta| < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of sqrt(s_NN) = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point 'tracklets' and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < |eta| < 4.9. Measurements are presented of the per-event charged particle density distribution, dN_ch/deta, and the average charged particle multiplicity in the pseudorapidity interval |eta|<0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sqrt(s_NN) results. The shape of the dN_ch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 0-10, 10-20, 20-30 and 30-40 %.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 40-50, 50-60, 60-70 and 70-80 %.
Mean values of the charged particle multiplicities in the pseudorapidiy range -0.5-0.5 as a function of centrality. N(C=PART), the number of participating nucleons in the collision, is also shown, determined from the muliplicity and ET of the event, with which it has been shown to be strongly correlated.
This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from sqrt{s} = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb-1. No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. For A_0 = 0 GeV, tan beta = 3, mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.
Distribution of ET(C=MISSING) IN GEV for data and background MC calculation.
Distribution of MT IN GEV for data and background MC calculation.
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.
Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and at least one heavy flavour jet candidate in sqrt{s} = 7 TeV proton-proton collisions. In a data sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tan(beta)=40 and in an SO(10) model framework.
Distribution of the effective mass for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the missing ET for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the effective mass for data and the SM expectation in the one-lepton plus 2 jet channel.
We present first measurements of charged and neutral particle-flow correlations in pp collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on charged particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 1 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 2 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 3 GeV.