The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.
prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
prompt $\psi(2S)$ $\lambda_\theta$
A search is presented for heavy bosons decaying to Z($\nu\bar{\nu}$)V(qq'), where V can be a W or a Z boson. A sample of proton-proton collision data at $\sqrt{s} =$ 13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb$^{-1}$. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W' boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.
Simulated distributions are shown for the cosine of the decay angle of SM vector bosons in the rest frame of a parent particle with a mass (mX) of 2\TeV. Solid lines represent VBF scenarios. Dashed lines represent ggF/DY scenarios.
Distributions of mT for ggF/DY-produced resonances X of mass 4.5 TeV.
Distributions of mT for VBF-produced resonances X of mass 4.5 TeV.
Measurements of the differential branching fraction and angular moments of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the $K^+\pi^-$ invariant mass range $1330
: Differential branching fraction of $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in bins of $q^2$ for the range $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^*(892)^0$ and $J/\psi \to \mu\mu$ branching fractions.
Measurement of the normalised moments, $\overline{\Gamma}_{i}$, of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the range $1.1< q^2<6.0 GeV^2/c^4$ and $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical and the second systematic.
Full covariance matrix of the normalised moments. The statistical and systematic uncertainties are combined.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
An angular analysis and a measurement of the differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$ are presented, using data corresponding to an integrated luminosity of $3.0\, {\rm fb^{-1}}$ of $pp$ collisions recorded by the LHCb experiment at $\sqrt{s} = 7$ and $8\, {\rm TeV}$. Measurements are reported as a function of $q^{2}$, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range $1
The signal yields for $B_s^0 \to \phi\mu^+\mu^-$ decays, as well as the differential branching fraction relative to the normalisation mode and the absolute differential branching fraction, in bins of $q^2$. The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the branching fraction of the normalisation mode.
(Top) $CP$-averaged angular observables $F_{\rm L}$ and $S_{3,4,7}$ obtained from the unbinned maximum likelihood fit.
(Bottom) $CP$ asymmetries $A_{5,6,8,9}$ obtained from the unbinned maximum likelihood fit.
The transverse polarization of $\Lambda$ and $\bar\Lambda$ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\rm F}$ from $5\times 10^{-5}$ to 0.01 and transverse momentum $p_{\rm T}$ from 0.8 to 15 GeV is $-0.010 \pm 0.005({\rm stat}) \pm 0.004({\rm syst})$ for $\Lambda$ and $0.002 \pm 0.006({\rm stat}) \pm 0.004({\rm syst})$ for $\bar\Lambda$. It is also measured as a function of $x_{\rm F}$ and $p_{\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\rm F}$ range covered by this mesurement.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons averaged over PT and XF.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of XF.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of PT.
We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.
The measured analysing power at 12 MeV. Errors contain statistics and systematics added in quadrature.
The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 0.9 to 1.0 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.0 to 1.2 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.2 to 1.4 GeV.
We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.
The measured and corrected (undiluted) polarizations.
The measured and corrected (undiluted) polarizations.
The reaction γp → K 0 Σ + has been measured with the SAPHIR detector at the electron stretcher ring ELSA. The total cross section rises up to a peak value of 1.1 μ b at a photon energy of 1.4 GeV. The differential cross sections dσ/dΩ are consistent with being flat throughout the measured energy range. The first measurement of the Σ + polarization in photon induced reactions was obtained.
Total cross section for the reaction GAMMA P --> K0 SIGMA+. Errors include statistics and the uncertainty on the acceptance calculation and photon flux.
Differential cross section for the reaction GAMMA P --> K0 SIGMA+. Errors are dominated by statistical uncertainties.
Measure of SIGMA+ polarization in the reaction GAMMA P --> K0 SIGMA+.