Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
The differential cross section for π − p → π 0 n has been measured in the t range 1.8 ⩽ | t | ⩽ 8.2 (GeV/ c ) 2 by a counter-spark chamber experiment detecting the neutron and both π 0 decay photons. A broad minimum was found, centered at | t | = 5.2 (GeV/ c ) 2 .
No description provided.
Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.
No description provided.
No description provided.
No description provided.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
None
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
Measurements have been made of the π ∓ proton total cross sections over the laboratory kinetic energy range 70 to 290 MeV. The absolute accuracy of the data is generally 0.5 %, but decreases to 1 % for some points where applied corrections are large or where low particle fluxes limit the statistical accuracy.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.
No description provided.
No description provided.
Total cross sections of K+ and K− mesons on protons and deuterons have been measured in a transmission experiment over the range of laboratory momentum 0.6-2.65 GeV/c. Measurements have been made on K− at 58 momenta at intervals of 25-50 MeV/c; the experimental accuracy is better than 1% above 700 MeV/c, and the momentum resolution of the beam is ±0.6%. Structure is observed in the total cross sections suggesting or confirming Y1∗ resonances at masses of 1665, 1768, 1905, 2020, 2250, and 2455 MeV/c2 and Y0∗ resonances at masses of 1695, 1819, 1870, 2100, and 2340 MeV/c2. The K+ measurements are less extensive, and are concentrated in the momentum range below 1.5 GeV/c; the experimental errors are typically ±0.2 mb. Structure previously reported in the K+p and K+d total cross sections near a laboratory momentum of 1.2 GeV/c is confirmed. Total cross sections of K+ and K− on carbon have been measured at a number of momenta with an accuracy of about ±2%.
No description provided.
No description provided.