Differential cross sections for π−p→γn have been determined from 427 to 625 MeV/c, mainly at 90° and 110° c.m. The data were obtained by combining measurements of the Panofsky ratio in flight with known charge-exchange cross sections. The results are compared with γn→π−p data derived from γd experiments; the difference is typically 30%. The radiative decay amplitudes of neutral πN resonances are therefore uncertain by at least 30%.
Charge exchange cross section from PWA.
PI- P --> GAMMA N cross section.
GAMMA N --> PI- P cross section calculated using detailed balance.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.
Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.
Measured total cross section. Statistical errors only.
Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.
We have determined the cross section for γγ→π+π+π−π− in a way free of assumptions about the relative contributions fromρ0ρ0,ρ02π and 4π (uncorrelated phase space). We find a sharp onset above threshold and a rather high cross section of about 200 nb aroundWγγ=1.5 GeV which consists to about 40% ofρ0ρ0 production with sizeable contributions fromρ02π and 4π (PS). The total cross section as well as theρ0ρ0 content fall rather fast at higher c.m. energies. Attempts to explain this behaviour in terms of production of known resonances are not successful so far. The angular distributions do not show any significant structure pointing to resonance formation in the 4π-system. Only theρ0-meson is observed in the moment analysis. The decay distributions of theρ0 for forward produced rhos are fairly consistent with helicity conservation of the produced rhos in accordance with the VDM picture.
No description provided.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO RHO RHO, RHO 2PI, AND 4PI(PHASE SPACE) USING TWO WIDE W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO THE RHO RHO, RHO PI, AND 4PI (PHASE SPACE) USING SMALL W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Data read off a graph.
The differential cross section for photoproduction of π° on hydrogen has been measured in a photon energy range of 560-690 MeV and for production angles in the interval 90°-105° in the centre of mass system. The experiment detects the recoil proton and a π°-decay photon in coincidence, using optical spark chambers and a lead glass Cerenkov counter. Presented cross sections, based on 35 000 events recorded on film, are in good agreement with recent phase shift analysis.
No description provided.
No description provided.
Differential cross sections of the reactions $(\gamma,\pi^\circ\pi^\circ)$ and $(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-)$ have been measured for several nuclei ($^1$H,$^{12}$C, and $^{\rm nat}$Pb) at an incident-photon energy of $E_{\gamma}$=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the $\pi\pi$ invariant-mass distribution is found in the $\pi^\circ\pi^\circ$ channel. This dependence is not observed in the $\pi^\circ\pi^{+/-}$ channel and is consistent with an in-medium modification of the $\pi\pi$ interaction in the $I$=$J$=0 channel. The data are compared to $\pi$-induced measurements and to calculations within a chiral-unitary approach.
Differential cross section for PI0PI0 production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.
Differential cross section for PI0PI+ production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.
In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.
Data read from graph.