This paper presents a measurement of the polarisation of $\tau$ leptons produced in $Z/\gamma^{*}\rightarrow\tau\tau$ decays which is performed with a dataset of proton-proton collisions at $\sqrt{s}=8$ TeV, corresponding to an integrated luminosity of 20.2 fb$^{-1}$ recorded with the ATLAS detector at the LHC in 2012. The $Z/\gamma^{*}\rightarrow\tau\tau$ decays are reconstructed from a hadronically decaying $\tau$ lepton with a single charged particle in the final state, accompanied by a $\tau$ lepton that decays leptonically. The $\tau$ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic $\tau$ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The $\tau$ polarisation extracted over the full phase space within the $Z/\gamma^{*}$ mass range of 66$ < m_{Z/\gamma^{*}} < $ 116 GeV is found to be $P_{\tau} =-0.14 \pm 0.02 (\text{stat}) \pm 0.04 (\text{syst})$. It is in agreement with the Standard Model prediction of $P_{\tau} =-0.1517 \pm 0.0019$, which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA $\tau$ decay library.
The measured polarisation values (fiducial and extracted to full phase-space) for electron-hadron and muon-hadron channels as well as combined.
Definition of fiducial region of the analysis. The requirements are applied at stable-particle level.
Impact of individual systematic uncertainties on full and fiducial polarisation.
This paper reports searches for heavy resonances decaying into $ZZ$ or $ZW$ using data from proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 36.1 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The searches are performed in final states in which one $Z$ boson decays into either a pair of light charged leptons (electrons and muons) or a pair of neutrinos, and the associated $W$ boson or the other $Z$ boson decays hadronically. No evidence of the production of heavy resonances is observed. Upper bounds on the production cross sections of heavy resonances times their decay branching ratios to $ZZ$ or $ZW$ are derived in the mass range 300--5000 GeV within the context of Standard Model extensions with additional Higgs bosons, a heavy vector triplet or warped extra dimensions. Production through gluon--gluon fusion, Drell--Yan or vector-boson fusion are considered, depending on the assumed model.
Selection acceptance times efficiency for ggF H -> Z Z -> llqq as a function of the Higgs boson mass, combining the HP and LP signal regions of the ZV -> llJ selection and the b-tagged and untagged regions of the ZV -> lljj selection.
Selection acceptance times efficiency for VBF H -> Z Z -> llqq as a function of the Higgs boson mass, combining the HP and LP signal regions of the ZV -> llJ selection and the b-tagged and untagged regions of the ZV -> lljj selection.
Selection acceptance times efficiency for ggF H -> Z Z -> vvqq as a function of the Higgs boson mass, combining the HP and LP signal regions.
A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying $Z$ boson in proton--proton collisions at $\sqrt{s} =$ 13 TeV is presented. This search uses 36.1 fb$^{-1}$ of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model $ZH$ production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass $m_H = $ 125 GeV. The corresponding limits on the production cross-section of the $ZH$ process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models.
Observed E<sub>T</sub><sup>miss</sup> distribution in the ee channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH → ℓℓ + inv signal distribution is shown with BR<sub>H → inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>χ</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.
Observed E<sub>T</sub><sup>miss</sup> distribution in the μμ channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH → ℓℓ + inv signal distribution is shown with BR<sub>H → inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>χ</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.
DM exclusion limit in the two-dimensional phase space of WIMP mass m<sub>χ</sub> vs mediator mass m<sub>med</sub> determined using the combined ee+μμ channel. Both the observed and expected limits are presented, and the 1σ uncertainty band for the expected limits is also provided. Regions bounded by the limit curves are excluded at the 95% CL. The grey line labelled with "m<sub>med</sub> = 2m<sub>χ</sub>'' indicates the kinematic threshold where the mediator can decay on-shell into WIMPs, and the other grey line gives the perturbative limit (arXiv 1603.04156). The relic density line (arXiv 1603.04156) illustrates the combination of m<sub>χ</sub> and m<sub>med</sub> that would explain the observed DM relic density.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 36.7 fb $^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The diboson system is reconstructed using pairs of large-radius jets with high transverse momentum and tagged as compatible with the hadronic decay of high-momentum $W$ or $Z$ bosons, using jet mass and substructure properties. The search is sensitive to diboson resonances with masses in the range 1.2-5.0 TeV. No significant excess is observed in any signal region. Exclusion limits are set at the 95% confidence level on the production cross section times branching ratio to dibosons for a range of theories beyond the Standard Model. Model-dependent lower limits on the mass of new gauge bosons are set, with the highest limit set at 3.5 TeV in the context of mass-degenerate resonances that couple predominantly to bosons.
Signal acceptance times efficiency as a function of mass for Scalar → WW in the heavy scalar model
Signal acceptance times efficiency as a function of mass for Z' → WW in the HVT model
Signal acceptance times efficiency as a function of mass for GKK → WW in the bulk RS model
The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $
The measured fiducial cross section.
Differential fiducial cross section in bins of the dimuon invariant mass. The measurements are listed together with the statistical and systematic uncertainties. The systematic uncertainties are separated into 2 uncorrelated, 7 correlated sources and the luminosity uncertainty. The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-".
A detailed study of multi-particle azimuthal correlations is presented using $pp$ data at $\sqrt{s}=5.02$ and 13 TeV, and $p$+Pb data at $\sqrt{s_{\rm{NN}}}=5.02$ TeV, recorded with the ATLAS detector at the LHC. The azimuthal correlations are probed using four-particle cumulants $c_{n}\{4\}$ and flow coefficients $v_n\{4\}=(-c_{n}\{4\})^{1/4}$ for $n=2$ and 3, with the goal of extracting long-range multi-particle azimuthal correlation signals and suppressing the short-range correlations. The values of $c_{n}\{4\}$ are obtained as a function of the average number of charged particles per event, $\left\langle N_{\rm{ch}} \right\rangle$, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The three-subevent method is found to be least sensitive to short-range correlations, which originate mostly from jets with a positive contribution to $c_{n}\{4\}$. The three-subevent method gives a negative $c_{2}\{4\}$, and therefore a well-defined $v_2\{4\}$, nearly independent of $\left\langle N_{\rm{ch}} \right\rangle$, which provides direct evidence that the long-range multi-particle azimuthal correlations persist to events with low multiplicity. Furthermore, $v_2\{4\}$ is found to be smaller than the $v_2\{2\}$ measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of $v_2\{4\}$ and $v_2\{2\}$ are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry.
The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for 0.3 < pT < 3 GeV.
The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.2 GeV.
The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.4 GeV.
Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 36.7 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s}=13$ TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.
Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a narrow-width (Γ_X = 4 MeV) spin-0 resonance as a function of its mass m_X.
Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a spin-0 resonance as a function of its mass m_X. The decay width of the resonance equals to 2% of m_X.
Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a spin-0 resonance as a function of its mass m_X. The decay width of the resonance equals to 6% of m_X.