Showing 10 of 30 results
We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p
$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.
PI0 ASYM(LL) measurements from 2005.
PI0 ASYM(LL) measurements from 2006.
PI0 ASYM(LL) measurements from 2009.
ETA ASYM(LL) measurements from 2005.
ETA ASYM(LL) measurements from 2006.
ETA ASYM(LL) measurements from 2009.
Combined PI0 ASYM(LL) values from the PHENIX data sets at sqrt(s) = 200 GeV.
Combined ETA ASYM(LL) values from the PHENIX data sets at sqrt(s) = 200 GeV.
The best fit value of the gluon polarization where the uncertainty is that at a chi-squared value of 9 when considering only statistical experimental uncertainties.
The polarizations of prompt J/psi and psi(2S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a dimuon data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The prompt J/psi and psi(2S) polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda(tilde), are measured from the dimuon decay angular distributions in three different polarization frames. The J/psi results are obtained in the transverse momentum range 14 < pt < 70 GeV, in the rapidity intervals abs(y) < 0.6 and 0.6 < abs(y) < 1.2. The corresponding psi(2S) results cover 14 < pt < 50 GeV and include a third rapidity bin, 1.2 < abs(y) < 1.5. No evidence of large transverse or longitudinal polarizations is seen in these kinematic regions, which extend much beyond those previously explored.
Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the HX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the HX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the HX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the HX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the HX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the HX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the HX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the HX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the PX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the PX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the PX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the PX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the PX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the PX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the PX frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the PX frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the CS frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the CS frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the CS frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Phi in the CS frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the CS frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the CS frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Theta-Phi in the CS frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the CS frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the CS frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Tilde in the CS frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the CS frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the CS frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Theta in the HX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the HX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the HX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Phi in the HX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the HX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the HX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Theta-Phi in the HX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the HX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the HX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Tilde in the HX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the HX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the HX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Theta in the PX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the PX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta in the PX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Phi in the PX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Phi in the PX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the PX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Theta-Phi in the PX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta-Phi in the PX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Theta-Phi in the PX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
Lambda-Tilde in the PX frame for the psi(2S) as a function of pT for 0.0 < |y| < 0.6.
Lambda-Tilde in the PX frame for the psi(2S) as a function of pT for 0.6 < |y| < 1.2.
Lambda-Tilde in the PX frame for the psi(2S) as a function of pT for 1.2 < |y| < 1.5.
The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a data sample of Y(nS) to oppositely charged muon pair decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda-tilde, are presented as a function of the Y(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges abs(y) < 0.6 and 0.6 < abs(y) < 1.2. No evidence of large transverse or longitudinal polarizations has been seen in the explored kinematic region.
Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the CS frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the CS frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the CS frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the HX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the HX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the HX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the HX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the HX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the HX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the HX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the HX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the PX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the PX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the PX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the PX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the PX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the PX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the PX frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the PX frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the CS frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the CS frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the CS frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the CS frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the CS frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the CS frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the CS frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the CS frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the HX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the HX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the HX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the HX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the HX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the HX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the HX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the HX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the PX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the PX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the PX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the PX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the PX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the PX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the PX frame for Y(2S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the PX frame for Y(2S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the CS frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the CS frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the CS frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the CS frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the CS frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the CS frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the CS frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the CS frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the HX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the HX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the HX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the HX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the HX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the HX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the HX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the HX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta in the PX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the PX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the PX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Phi in the PX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Theta-Phi in the PX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta-Phi in the PX frame for Y(3S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Tilde in the PX frame for Y(3S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Tilde in the PX frame for Y(3S) production in the |y| range 0.6-1.2.
Estimated number of signal events for Y(1S) production.
Estimated number of signal events for Y(2S) production.
Estimated number of signal events for Y(3S) production.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, and.
Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
Analysing power measurements for a 98 GeV PI- beam (standard track).
Analysing power measurements for a 87 GeV PI- beam (standard track).
Analysing power measurements for a 87 GeV PI- beam (short track).
Analysing power measurements for a 67 GeV PI- beam (standard track).
Analysing power measurements for a 67 GeV PI- beam (short track).
Analysing power measurements for a 57 GeV PI- beam (short track).
We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.
The measured and corrected (undiluted) polarizations.
The measured and corrected (undiluted) polarizations.
The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in
The errors are statistical and systematic combined in quadrature.
No description provided.
The spin correlation coefficient combinations Axx + Ayy, Axx - Ayy and the analyzing powers Ay(theta) were measured for pp-->pnpi+ at beam energies of 325, 350, 375 and 400 MeV. A polarized internal atomic hydrogen target and a stored, polarized proton beam were used. These polarization observables are sensitive to contributions of higher partial waves. A comparison with recent theoretical calculations is provided.
No description provided.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.