Measurements of differential cross sections for pi-zero photoproduction from protons have been made at angles between 60° and 140° c.m. in the photon energy range 0.7 GeV to 1.7 GeV. The data are compared with the rits provided by three recent partial-wave analyses of pion photoproduction and some significant discrepancies observed.
.
.
.
Differential cross sections for the process γ p → p η have been measuredd at c.m. angles of 28°, 35° and 42° at incident energies between 2 GeV and 2.8 GeV. Data from an earlier experiment below 2 GeV have been re-analysed and corrected. The whole set of data is compared with the form ( s − M 2 ) 2 d σ /d t , which fits data at higher energies. There is good agreement above 2 GeV, particularly at the largest angle, but strong departures below.
No description provided.
THESE DATA ARE A REANALYSIS OF THOSE REPORTED IN P. S. L. BOOTH ET AL., NP B25, 510 (1971). THE CORRECTED RESULTS ARE IN GENERAL ABOUT TWICE THE OLD VALUES.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.
No description provided.
No description provided.
No description provided.
Differential cross-sections have been measured for π0 photoproduction over the energy range 0.8 GeV to 1.4 GeV and at angles between 50° and 90° c.m.
No description provided.
The elastic scattering of 600-MeV protons from light nuclei has been studied at the National Aeronautics Space Administration Space Radiation Effects Laboratory (SREL) synchrocyclotron. Differential cross sections have been obtained for the scattering of protons from hydrogen, deuterium, helium-3, and helium-4. Polarization was measured for deuterium and He4 nuclei. The p−p cross-section data are in excellent agreement with the predictions from the Livermore phase shifts. Small-angle p−D, p−He3 elastic scattering data are compared with calculations based on the multiple-scattering theories of Watson and Glauber.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Total and differential cross sections are presented for the reactions K − p → K − p and K − p → K o n at 13 points in the c.m. energy range 1915–2168 MeV. An energy-dependent partial-wave analysis is carried out on these data together with the polarisation measurements of Daum et al. [1] and the total cross section measurements [2] within this energy range. The well known Σ(1915), Σ(2030) and Λ(2100) are observed and their resonance parameters measured. Structure is also found in the D 05 and F 07 waves. An SU(3) analysis of the 5 2 + octet, 7 2 + decuplet and 7 2 − singlet gives generally good agreement between theory and experiment except that the elasticity of the Σ(1915) is experimentally rather larger than predicted.
No description provided.
No description provided.
DETERMINED BY NORMALIZING AT ZERO DEG TO TOTAL CROSS SECTIONS VIA THE OPTICAL THEOREM.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.