During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o
Hadronic cross section measured with the 1993 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity).
Hadronic cross section measured with the 1994 data. Additional systematic error of 0.11 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).
Hadronic cross section measured with the 1995 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.
Updated values of coupling constants and electroweak mixing angle.
Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.
Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.
None
The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.
Using a primary beam of 40 Ar at ∼1A GeV impinging on a Be target, the production cross-sections of light neutron-rich fragments from projectile fragmentation were measured at the projectile-fragment separator FRS at GSI. The experimental cross-sections were obtained for isotopes of the elements B to F both close to stability and near the neutron drip line. These data are compared to the results of the empirical parametrization EPAX. We also compare the results to those measured previously at LBL. As an additional result, the particle instability of 26 O has been confirmed.
No description provided.
No description provided.
No description provided.
Yields and phase space distributions of φ -mesons emitted from p+p (minimum bias trigger), p+Pb (at various centralities) and central Pb+Pb collisions are reported ( E beam =158 A GeV). The decay φ →K + K − was used for identification. The φ / π ratio is found to increase by a factor of 3.0±0.7 from inelastic p+p to central Pb+Pb. Significant enhancement in this ratio is also observed in subclasses of p+p events (characterized by high charged-particle multiplicity) as well as in the forward hemisphere of central p+Pb collisions. In Pb+Pb no shift or significant broadening of the φ -peak is seen.
Transverse mass distribution for PHI mesons produced in PB PB collisions averaged over the rapidity region 3.0 to 3.8.
Transverse mass distribution for PHI mesons produced in P P collisions averaged over the rapidity region 2.9 to 4.5.
Rapidity distributions for PHI mesons produced in PB PB collisions.
Kinematically complete events have been studied for the reactions dp→dpπ0 and dp→dnπ+ at projectile energies between 437 and 559 MeV. The measurement covers a range of pion momenta η=pπ,c.m.max/mπc from near the production threshold (η=0.32) to η=0.86 close to the NN→NNπ threshold. The measurements were performed at the CELSIUS storage ring with the PROMICE/WASA setup. Angular and spectral distributions of the charged ejectiles as well as total cross sections are decomposed into the fractions that can be attributed to a quasifree NN→dπ process with a spectator nucleon, and to a process involving all three nucleons. The quasifree contribution increases with energy and dominates from the NN→NNπ threshold on. The results are compared to calculations with a spectator model with and without dp final state interactions.
Two first points on energy correspond to different luminosities.
Attenuation measurements of reaction and total cross sections have been made for π− beams at 410, 464, and 492 MeV on targets of CD2, 6Li, C, Al, S, Ca, Cu, Zr, Sn, and Pb. These results are assisted by and compared to predictions from a recent eikonal optical model. Calculations with this model, which does not include pion absorption, agree with recent elastic scattering data, but are significantly below our measured reaction and total cross sections.
No description provided.
No description provided.
No description provided.
We report on a measurement of the branching ratio of the rare decay ω→ηγ relative to the well known decay ω→π0γ. The ω’s are produced in pp¯→ηω and pp¯→π0ω. Eigenstate mixing and interference effects of the ω and ρ0 are taken into account, as well as coherent interference with the background. We find evidence for the non-resonant annihilation channel B(pp¯→ηηγ)=(3.5±1.3)×10−5 and limit the value of B(ω→ηγ) to the range of (0.7to5.5)×10−4 depending on the degree of coherence with the background.
No description provided.
We present the results of a search for the production of light elements in p¯p collisions at the Fermilab Tevatron collider. Momentum, time of flight, and dE/dx measurements are used to distinguish nuclei from elementary particles. A production ratio for deuterium to hydrogen is calculated and compared to the primordial value of the big bang model. Some evidence for tritium is found and none for helium isotopes.
Invariant cross section and cross section per unit rapidity interval for deuterium and anti-deuterium production.
Independent measurement of the proton or anti-proton production cross section (K Gulbrandsen, Senior Thesis, University of Wisconsin-Madison 1998).
Measured cross sections for tritium production.
Neutral and charged two-pion production in p+d→ 3 He+2 π reactions has been studied at CELSIUS at a proton beam energy of 477 MeV. The total cross section for double pion production is 0.22±0.03 μ b. The ratio of the cross sections for the production of charged pion pairs with isospin T =1 and T =0 was determined to be σ ( π + π − ; T =1)/ σ ( π + π − ; T =0)=1.4±0.4.
(I=1, I=0) stands for isospin of PI+ PI- system.