We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.
The proton-proton elastic differential cross-section $d\sigma_{el}/dt$ in the t-range 0.045<|t|<0.135 $GeV^{2}$ at sqrt(s) = 200 GeV.
The B-slope of the exponential fit A*exp(-B*|t|) to the single differential proton-proton elastic cross-section in the t-range 0.045<|t|<0.135 GeV**2 at sqrt(s) = 200 GeV.
The total, elastic and inelastic cross-sections for proton-proton scattering at sqrt(s)=200 GeV, the elastic cross-section measured in the t-range 0.045<|t|<0.135 GeV^2 and the value of the differential cross-section extrapolated to |t| = 0.
We report the measurement of the $\gamma p \rightarrow K^{+}\Lambda$ and $\gamma p \rightarrow K^{+}\Sigma^{0}$ reactions at SPring-8. The differential cross sections and photon-beam asymmetries are measured at forward $K^{+}$ production angles using linearly polarized tagged-photon beams in the range of $E_{\gamma}=1.5$--3.0 GeV. With increasing photon energy, the cross sections for both $\gamma p \rightarrow K^{+}\Lambda$ and $\gamma p \rightarrow K^{+}\Sigma^{0}$ reactions decrease slowly. Distinct narrow structures in the production cross section have not been found at $E_{\gamma}=1.5$--3.0 GeV. The forward peaking in the angular distributions of cross sections, a characteristic feature of $t$-channel exchange, is observed for the production of $\Lambda$ in the whole observed energy range. A lack of similar feature for $\Sigma^{0}$ production reflects a less dominant role of $t$-channel contribution in this channel. The photon-beam asymmetries remain positive for both reactions, suggesting the dominance of $K^{*}$ exchange in the $t$ channel. These asymmetries increase gradually with the photon energy, and have a maximum value of +0.6 for both reactions. Comparison with theoretical predictions based on the Regge trajectory in the $t$ channel and the contributions of nucleon resonances indicates the major role of $t$-channel contributions as well as non-negligible effects of nucleon resonances in accounting for the reaction mechanism of hyperon photoproduction in this photon energy regime.
Differential cross sections for the GAMMA P --> K+ LAMBDA reaction as a function of photon energy Egamma for the kaon c.m. production polar angle 0.6 < cos(theta) < 0.7.
Differential cross sections for the GAMMA P --> K+ LAMBDA reaction as a function of photon energy Egamma for the kaon c.m. production polar angle 0.7 < cos(theta) < 0.8.
Differential cross sections for the GAMMA P --> K+ LAMBDA reaction as a function of photon energy Egamma for the kaon c.m. production polar angle 0.8 < cos(theta) < 0.9.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
We present a measurement of the elastic differential cross section $d\sigma(p\bar{p}\rightarrow p\bar{p})/dt$ as a function of the four-momentum-transfer squared t. The data sample corresponds to an integrated luminosity of $\approx 31 nb^{-1}$ collected with the D0 detector using dedicated Tevatron $p\bar{p} $ Collider operating conditions at sqrt(s) = 1.96 TeV and covers the range $0.26 <|t|< 1.2 GeV^2$. For $|t|<0.6 GeV^2$, d\sigma/dt is described by an exponential function of the form $Ae^{-b|t|}$ with a slope parameter $ b = 16.86 \pm 0.10(stat) \pm 0.20(syst) GeV^{-2}$. A change in slope is observed at $|t| \approx 0.6 GeV^2$, followed by a more gradual |t| dependence with increasing values of |t|.
The $d\sigma$/$dt$ differential cross section. The statistical and systematic uncertainties are added in quadrature.
We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections $\frac{d\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic $\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\phi$ mesons.
Differential cross section as a function of ABS(T-TMIN).
Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.