We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.
Q(NAME=B) parameter is the total sum of the individual charges of the projectile fragments.
The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.
The total cross sections as a function of beam momentum and excess energy with statistical errors. The uncertainty on the beam momentum and excess energy are +- 0.00080 GeV and +- 0.28 MeV respectively.
Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).
We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.
Distribution of Thrust.
Distribution of Thrust Major.
Distribution of Thrust Minor.
We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.
Measured cross sections for the hadronic events.
Measured cross sections for the muon-pair events.
Measured cross sections for the tau-pair events.
We measure the relative rate of production of orbitally excited (L=1) states of B mesons (B**) by observing their decays into Bπ±. We reconstruct B mesons through semileptonic decay channels using data collected in pp¯ collisions at s=1.8TeV. The fraction of light B mesons that are produced as L=1B** states is measured to be 0.28±0.06(stat)±0.03(syst). We also measure the collective mass of the B** states, and quantify the result by quoting the (model-dependent) mass of the lowest B** state to be m(B1)=5.71±0.02GeV/c2.
FD is considered as a quark fragmentation fraction.
We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.
The measured and corrected (undiluted) polarizations.
The measured and corrected (undiluted) polarizations.
The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model.
Fraction of longitudinally polarized W bosons. Combined results from 183 and 189 GeV.