We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.
Measured cross section as a function of the jet transverse momentum.
Measured cross section as a function of the jet rapidity.
Measured cross section as a function of the Z0 transverse momentum.
The process $p\bar{p} \to \gamma$ + jet + X is studied using 1.0 $fb^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider at a center-of-mass energy $\sqrt{s}$=1.96 TeV. Photons are reconstructed in the central rapidity region |$y^{\gamma}$|< 1.0 with transverse momenta in the range 30<$p^{\gamma}_T$<400 GeV while jets are reconstructed in either the central |$y^{jet}$|< 0.8 or forward 1.5 <|$y^{jet}$|<2.5 rapidity intervals with $p^{jet}_T$> 15 GeV. The differential cross section $d^3\sigma/dp^{\gamma}_T dy^\gamma dy^{jet}$ is measured as a function of $p^{\gamma}_T$ in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for the region ABS(YRAP(JET)) 1.5 to 2.5 and YRAP(GAMMA)*YRAP(JET) > 0.
We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We report on a study of jet shapes in inclusive jet production in $p \bar{p}$ collisions at $\sqrt{s} = 1.96 {\rm TeV}$ using the upgraded Collider Detector at Fermilab in Run II (CDF II) based on an integrated luminosity of $170 \rm pb^{-1}$. Measurements are carried out on jets with rapidity $0.1 < |Y^{\rm jet}| < 0.7$ and transverse momentum 37 GeV/c $< P_T^{\rm jet} < 380$ GeV/c. The jets have been corrected to the hadron level. The measured jet shapes are compared to leading-order QCD parton-shower Monte Carlo predictions as implemented in the PYTHIA and HERWIG programs. PYTHIA, tuned to describe the underlying event as measured in CDF Run I, provides a better description of the measured jet shapes than does PYTHIA or HERWIG with their default parameters.
The measured differential jet shape.
The measured differential jet shape.
The measured differential jet shape.
Inclusive jet production, e+e- -> e+e- \ee$ jet X, is studied using 560/pb of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The inclusive differential cross section is measured using a k_t jet algorithm as a function of the jet transverse momentum, pt, in the range 3<pt<50 GeV for a pseudorapidity, eta, in the range -1<eta<1. This cross section is well represented by a power law. For high pt, the measured cross section is significantly higher than the NLO QCD predictions, as already observed for inclusive charged and neutral pion production.
No description provided.
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in pp-bar collisions at a center-of-mass energy sqrt(s)=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb-1. Azimuthal correlations are stronger at larger transverse momenta. These are well-described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where soft effects are significant.
Distribution for the maxPT jet from 75 to 100 GeV.
Distribution for the maxPT jet from 100 to 130 GeV.
Distribution for the maxPT jet from 130 to 180 GeV.
In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.