Date

Test of lepton flavor universality in semileptonic B$^+_\text{c}$ meson decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-012, 2024.
Inspire Record 2813755 DOI 10.17182/hepdata.153486

A measurement of the ratio of branching fractions $R$(J/$\psi$) = $\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\tau^+\nu_\tau$)/$\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\mu^+\nu_\mu$) in the J/$\psi$$\to$$\mu^+\mu^-$, $\tau^+$$\to$$\mu^+\mu_\tau\overline{\nu}_\tau$ decay channel is presented. This measurement uses a sample of proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2018, corresponding to an integrated luminosity of 59.7 fb$^{-1}$. The measured ratio, $R$(J/$\psi$) = 0.17$^{+ 0.18}_{- 0.17}$ (stat) $^{+ 0.21}_{- 0.22}$ (syst) $^{+ 0.19}_{- 0.18}$ (theo) = 0.17 $\pm$ 0.33, agrees with the value of 0.2582 $\pm$ 0.0038 predicted by the standard model, which assumes lepton flavor universality.

1 data table

Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-21-004, 2024.
Inspire Record 2812281 DOI 10.17182/hepdata.150033

The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt$$m$$\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of 0 $\lt$$c\tau$$\lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.

11 data tables

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

More…

Search for resonant pair production of Higgs bosons in the $\mathrm{b\bar{b}b\bar{b}}$ final state using large-area jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-B2G-20-004, 2024.
Inspire Record 2809450 DOI 10.17182/hepdata.146900

A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74-0.29 fb and 4.94-0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5-0.35 fb and 8.23-0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.

22 data tables

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

More…

Measurement of the B$^0_\mathrm{s}$$\to$ J/$\psi$K$^0_\mathrm{S}$ effective lifetime from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-001, 2024.
Inspire Record 2808929 DOI 10.17182/hepdata.149761

The effective lifetime of the B$^0_\mathrm{s}$ meson in the decay B$^0_\mathrm{s}$$\to$ J/$\psi$K$^0_\mathrm{S}$ is measured using data collected during 2016-2018 with the CMS detector in $\sqrt{s}$ = 13 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The effective lifetime is determined by performing a two-dimensional unbinned maximum likelihood fit to the B$^0_\mathrm{s}$ meson invariant mass and proper decay time distributions. The resulting value of 1.59 $\pm$ 0.07 (stat) $\pm$ 0.03 (syst) ps is the most precise measurement to date and is in good agreement with the expected value.

1 data table

The measured effective lifetime for the $\mathrm{B}^{0}_{\mathrm{s}} \to \mathrm{J}/{\psi}\,\mathrm{K}^{0}_{\mathrm{S}}$ decay


Constraints on the Higgs boson self-coupling from the combination of single and double Higgs boson production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-23-006, 2024.
Inspire Record 2808928 DOI 10.17182/hepdata.152689

The Higgs boson (H) trilinear self-coupling, $\lambda_3$, is constrained via its measured properties and limits on the HH pair production using the proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV. The combination of event categories enriched in single-H and HH events is used to measure $\kappa_\lambda$, defined as the value of $\lambda_3$ normalized to its standard model prediction, while simultaneously constraining the Higgs boson couplings to fermions and vector bosons. Values of $\kappa_\lambda$ outside the interval $-$1.2 $\lt$$\kappa_\lambda$$\lt$ 7.5 are excluded at 2$\sigma$ confidence level, which is compatible with the expected range of $-$2.0 $\lt$$\kappa_\lambda$$\lt$ 7.7 under the assumption that all other Higgs boson couplings are equal to their standard model predicted values. Relaxing the assumption on the Higgs couplings to fermions and vector bosons the observed (expected) $\kappa_\lambda$ interval is constrained to be within $-$1.4 $\lt$$\kappa_\lambda$$\lt$ 7.8 ($-$2.3 $\lt$$\kappa_\lambda$$\lt$ 7.8) at 2$\sigma$ confidence level.

20 data tables

Observed kappa lambda likelihood scan from single-H combination fixing the other Higgs boson couplings to the SM.

Observed kappa lambda likelihood scan from HH combination fixing the other Higgs boson couplings to the SM.

Observed kappa lambda likelihood scan from single-H and HH combination fixing the other Higgs boson couplings to the SM.

More…

Measurement of the $\mathrm{t\bar{t}}$H and tH production rates in the H $\to$$\mathrm{b\bar{b}}$ decay channel using proton-proton collision data at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-19-011, 2024.
Inspire Record 2808025 DOI 10.17182/hepdata.152799

An analysis of the production of a Higgs boson (H) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}$H) or a single top quark (tH) is presented. The Higgs boson decay into a bottom quark-antiquark pair (H $\to$$\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}$H production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}$H production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3$^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}$H and tH production rates, and the results are combined with those obtained in other Higgs boson decay channels.

14 data tables

Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.

Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.

Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.

More…

Version 2
Measurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the H $\to $$\mathrm{b\bar{b}}$ decay mode using LHC proton-proton collision data at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-21-020, 2024.
Inspire Record 2806818 DOI 10.17182/hepdata.150995

A measurement is performed of Higgs bosons produced with high transverse momentum ($p_\mathrm{T}$) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The decay of a high-$p_\mathrm{T}$ Higgs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are 4.9$^{+1.9}_{-1.6}$ and 1.6$^{+1.7}_{-1.5}$ for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.

9 data tables

Jet substructure SF, JMS SF, JMR

All signal region bins of the signal strength fit

DDB scale factors

More…

An Upper Limit on the Photoproduction Cross Section of the Spin-Exotic $\pi_1(1600)$

Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
2024.
Inspire Record 2804215 DOI 10.17182/hepdata.153410

The spin-exotic hybrid meson $\pi_{1}(1600)$ is predicted to have a large decay rate to the $\omega\pi\pi$ final state. Using 76.6~pb$^{-1}$ of data collected with the GlueX detector, we measure the cross sections for the reactions $\gamma p \to \omega \pi^+ \pi^- p$, $\gamma p \to \omega \pi^0 \pi^0 p$, and $\gamma p\to\omega\pi^-\pi^0\Delta^{++}$ in the range $E_\gamma =$ 8-10 GeV. Using isospin conservation, we set the first upper limits on the photoproduction cross sections of the $\pi^{0}_{1}(1600)$ and $\pi^{-}_{1}(1600)$. We combine these limits with lattice calculations of decay widths and find that photoproduction of $\eta'\pi$ is the most sensitive two-body system to search for the $\pi_1(1600)$.

3 data tables

Measured $\sigma(\gamma p\to\omega\pi^+\pi^-p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 13.5% for the tracking efficiency, and 8.1% for the photon efficiency.

Measured $\sigma(\gamma p\to\omega\pi^0\pi^0p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 9.1% for the tracking efficiency, and 24.3% for the photon efficiency.

Measured $\sigma(\gamma p\to\omega\pi^-\pi^0\Delta^{++})$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 16% for the tracking efficiency, and 16.3% for the photon efficiency.


Observation of double J/$\psi$ meson production in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-23-013, 2024.
Inspire Record 2804399 DOI 10.17182/hepdata.152618

The first observation of the concurrent production of two J/$\psi$ mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb$^{-1}$. The two J/$\psi$ mesons are reconstructed in their $\mu^+\mu^-$ decay channels with transverse momenta $p_\mathrm{T}$$\gt$ 6.5 GeV and rapidity $\lvert y \rvert$$\lt$ 2.4. Events where one of the J/$\psi$ mesons is reconstructed in the dielectron channel are also considered in the search. The pPb $\to$ J/$\psi$J/$\psi$+X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is $\sigma$(pPb$\to$ J/$\psi$J/$\psi$+X)= 22.0 $\pm$ 8.9 (stat) $\pm$ 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/$\psi$ mesons produced in single (SPS) and double (DPS) parton scatterings yields $\sigma^{\mathrm{pPb}\to\mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{SPS}$ = 16.5 $\pm$ 10.8 (stat) $\pm$ 0.1 (syst) nb and $\sigma^{\mathrm{pPb}\to \mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{DPS}$ = 5.4 $\pm$ 6.2 (stat) $\pm$ 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of $\sigma_\text{eff}$$\gt$ 1.0 mb at 95% confidence level.

3 data tables

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$


Measurement of the polarizations of prompt and non-prompt J/$\psi$ and $\psi$(2S) mesons produced in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 858 (2024) 139044, 2024.
Inspire Record 2800640 DOI 10.17182/hepdata.150034

The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.

4 data tables

prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

More…