Date

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 142003, 2007.
Inspire Record 751885 DOI 10.17182/hepdata.102938

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

4 data tables

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

More…

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

11 data tables

(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.

More…

The $e^+ e^-\to K^+ K^- \pi^+\pi^-$, $K^+ K^- \pi^0\pi^0$ and $K^+ K^- K^+ K^-$ Cross Sections Measured with Initial-State Radiation

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 76 (2007) 012008, 2007.
Inspire Record 747875 DOI 10.17182/hepdata.50373

We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.

7 data tables

Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.

Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.

Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.

More…

Energy dependence of $\pi^{\pm}$, $p$ and $\bar{p}$ transverse momentum spectrafor Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$~=~62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 655 (2007) 104-113, 2007.
Inspire Record 747299 DOI 10.17182/hepdata.100592

We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV. Data are presented at mid-rapidity (|y| &lt; 0.5) for 0.2 &lt; pT &lt; 12 GeV/c. In the intermediate pT region (2 &lt; pT &lt; 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT >7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at \sqrt{s_NN} = 62.4 GeV peak at pT ~ 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT > 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

5 data tables

Midrapidity (|y| < 0.5) transverse momentum spectra for pions, protons, anti-protons for various event centrality classes for Au+Au at sqrt(sNN) = 62.4 GeV. Also shown to study the energy dependence are the central 0-12% pion, proton, anti-proton spectra for Au+Au at sqrt(sNN) = 200 GeV.

The insets show pi−/pi+ ratios at sqrt(sNN) = 62.4 GeV and anti-proton/proton ratios at sqrt(sNN) = 62.4 (0-10%) and 200 GeV (0-12%).

The minimum bias data shown here were extracted from the figures by xyscan. Hence, the dataset is not full (especially in the lower pT range where it is hard to distinguish points), and the statistical errors shown here are an upper limit of the statistical uncertainty based on the marker sizes.

More…

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

5 data tables

The elliptic flow, $v_{2}$($p_{T}$), for the $\phi$-meson as a function of centrality. The vertical error bars represent the statistical errors while the shaded bands represent the systematic uncertainties. For clarity, data points are shifted slightly.

(color online) Transverse momentum distributions of $\phi$-mesons from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, distributions for different centralities are scaled by factors of ten. Dashed lines represent the exponential fits to the distributions and the dotted lines are Levy function fits. Error bars represent statistical errors only.

(color online) The $N(\Omega)/N(\phi)$ ratio vs. $p_{T}$ for three centrality bins in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions. The solid and dashed lines represent recombination model predictions for central collisions [21] for total and thermal contributions, respectively.

More…

Mass, quark-number, and sqrt s(NN) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 054906, 2007.
Inspire Record 741917 DOI 10.17182/hepdata.104927

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ for pions, kaons, protons, $\Lambda$, $\bar{\Lambda}$, $\Xi+\bar{\Xi}$, and $\Omega + \bar{\Omega}$, along with $v_4$ for pions, kaons, protons, and $\Lambda + \bar{\Lambda}$ at mid-rapidity for Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV. The $v_2(p_T)$ values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, $v_2$ values at 62.4, 130, and 200 GeV are as little as 10%--15% larger than those in Pb+Pb collisions at $\sqrt{s_{_{NN}}}=17.3$ GeV. At intermediate transverse momentum ($p_T$ from 1.5--5 GeV/c), the 62.4 GeV $v_2(p_T)$ and $v_4(p_T)$ values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon $v_2$ is larger than anti-baryon $v_2$ at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances $v_2$, or that anti-baryon and baryon annihilation is larger in the in-plane direction.

106 data tables

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

More…

Observation of the Exclusive Reaction e+ e- ---> phi eta at s**(1/2) = 10.58-GeV

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 74 (2006) 111103, 2006.
Inspire Record 731865 DOI 10.17182/hepdata.52608

We report the observation of $\e^+e^-\to \phi\eta$ near $\sqrt{s}$ = 10.58 GeV with 6.5 $\sigma$ significance in the $K^+K^-\gamma\gamma$ final state in a data sample of 224 $fb^{-1}$ collected by the BaBar experiment at the PEP-II $e^+e^-$ storage rings. We measure the restricted radiation-corrected cross section to be $\sigma(\e^+e^- \to \phi \eta) =$$2.1\pm 0.4 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$ within the range $|\cos\theta^*| < 0.8$, where $\theta^*$ is the center-of-mass polar angle of the $\phi$ meson. The $\phi$ meson is required to be in the invariant mass range of 1.008 $< m_{\phi} <$ 1.035 \gevcc. The radiation-corrected cross section in the full $\cos\theta^*$ range is extrapolated to be $2.9\pm 0.5 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$.

1 data table

Radiation corrected cross section in the limited cos(theta) range and extrapolated to the full range assuming a 1+ cos(theta)**2 dependence.


Evidence of a broad structure at an invariant mass of 4.32- GeV/c**2 in the reaction e+ e- ---> pi+ pi- psi(2S) measured at BaBar

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Bona, M. ; et al.
Phys.Rev.Lett. 98 (2007) 212001, 2007.
Inspire Record 729388 DOI 10.17182/hepdata.19344

We present a measurement of the cross section of the process $e^+e^-\to\pi^+pi^-\psi(2S)$ from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the PEP-II $e^+e^-$ storage rings. The study is based on 298 fb$^{-1}$ of data recorded with the BaBar detector. A structure is observed in the cross-section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.

1 data table

The measured c.m. energy dependence of the cross section with statistical errors only.. Bins with no recorded data are shown as a 'dash'.


Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

Rapidity and species dependence of particle production at large transverse momentum for d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Adams, J. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 76 (2007) 054903, 2007.
Inspire Record 726101 DOI 10.17182/hepdata.101349

We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.

15 data tables

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

More…