A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.
Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.
Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.
We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.
Measured values of G1N ang G2N.
Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.
Ratio of single PI0 NC cross section to the total CC cross section. For reference the total CC cross section is calculated to be 1.1 x 10**-38 CM**2/nucleon averaged over the K2K neutrino beam energy.
We report on measurements of the neutron spin asymmetries $A_{1,2}^n$ and polarized structure functions $g_{1,2}^n$ at three kinematics in the deep inelastic region, with $x=0.33$, 0.47 and 0.60 and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. These measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized $^3$He target. The results for $A_1^n$ and $g_1^n$ at $x=0.33$ are consistent with previous world data and, at the two higher $x$ points, have improved the precision of the world data by about an order of magnitude. The new $A_1^n$ data show a zero crossing around $x=0.47$ and the value at $x=0.60$ is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high $x$ agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for $A_2^n$ and $g_2^n$ have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment $d_2^n$ was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new $g_1^n/F_1^n$ values based on the quark parton model. While results for $\Delta u/u$ agree well with predictions from various models, results for $\Delta d/d$ disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed.
Measurements of the HE3 asymmetries.
Measurements of the HE3 spin structure functions.
Measurements of the HE3 spin structure functions.
We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.
Measured values of A1 and G1/F1.
We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.
We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.
The measured and corrected (undiluted) polarizations.
The measured and corrected (undiluted) polarizations.
Using data from the Fermilab fixed target experiment E665, general properties of forward produced charged hadrons in μp interactions at a primary muon energy of 470 GeV are investigated. The normalized inclusive singleparticle distributions for Feynman-x D(xF ) and for the transverse momentum D(p2t , xF ) are measured as a function of W and Q2. The dependence of the average transverse momentum squared 〈p2t〉 on xF , W and Q2 is studied. The increasing contribution from diffractive production as Q2 decreases leads to a reduction of the average charged hadron multiplicities at low (positive) xF and an enhancement at large xF , for Q2 ≲ 10 GeV2. It also reduces 〈p2t〉 for Q2 ≲ 5 GeV2 and 0.4 ≲ xF < 1.0.
Normalised inclusive single particle distributions of charged hadrons for all events in W intervals. Additional systematic uncertainty of 4 PCT.
Normalised inclusive single particle distributions of charged hadrons for all events in Q**2 intervals. Additional systematic uncertainty of 4 PCT.
Normalised inclusive single particle distributions of charged hadrons for all events in X (Bjorken) intervals. Additional systematic uncertainty of 4 PCT.
Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function $g_1~n(x,Q~2)$ in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized $~3$He internal gas target. The data cover the kinematic range $0.023<x<0.6$ and $1 (GeV/c)~2 < Q~2 <15 (GeV/c)~2$. The integral $\int_{0.023}~{0.6} g_1~n(x) dx$ evaluated at a fixed $Q~2$ of $2.5 (GeV/c)~2$ is $-0.034\pm 0.013(stat.)\pm 0.005(syst.)$. Assuming Regge behavior at low $x$, the first moment $\Gamma_1~n=\int_0~1 g_1~n(x) dx$ is $-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.)$.
No description provided.
Data extrapolated to full x region. Second systematic error is the error on this extrapolation.