Showing 10 of 14 results
New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.16 < $\alpha$ < 0.18.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.18 < $\alpha$ < 0.20.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.20 < $\alpha$ < 0.22.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.22 < $\alpha$ < 0.24.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.24 < $\alpha$ < 0.26.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.26 < $\alpha$ < 0.28.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.28 < $\alpha$ < 0.30.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.30 < $\alpha$ < 0.32.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.32 < $\alpha$ < 0.34.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.16 < $\alpha$ < 0.18.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.18 < $\alpha$ < 0.20.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.20 < $\alpha$ < 0.22.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.22 < $\alpha$ < 0.24.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.24 < $\alpha$ < 0.26.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.26 < $\alpha$ < 0.28.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.28 < $\alpha$ < 0.30.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.30 < $\alpha$ < 0.32.
The average dijet invariant mass distributions in data, along with the fitted background estimates for 0.32 < $\alpha$ < 0.34.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.10 < $\alpha$ < 0.12.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.12 < $\alpha$ < 0.14.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.14 < $\alpha$ < 0.16.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.16 < $\alpha$ < 0.18.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.18 < $\alpha$ < 0.20.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.20 < $\alpha$ < 0.22.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.22 < $\alpha$ < 0.24.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.24 < $\alpha$ < 0.26.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.26 < $\alpha$ < 0.28.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.28 < $\alpha$ < 0.30.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.30 < $\alpha$ < 0.32.
The expected and observed limits on $m_{4j}$ for signal templates using a 4-parameter fit function for 0.32 < $\alpha$ < 0.34.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.10 < $\alpha$ < 0.12.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.12 < $\alpha$ < 0.14.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.14 < $\alpha$ < 0.16.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.16 < $\alpha$ < 0.18.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.18 < $\alpha$ < 0.20.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.20 < $\alpha$ < 0.22.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.22 < $\alpha$ < 0.24.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.24 < $\alpha$ < 0.26.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.26 < $\alpha$ < 0.28.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.28 < $\alpha$ < 0.30.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.30 < $\alpha$ < 0.32.
The expected and observed limits on $m_{\langle 2j \rangle}$ for signal templates using a 4-parameter fit function for 0.32 < $\alpha$ < 0.34.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.10 < $\alpha$ < 0.12.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.12 < $\alpha$ < 0.14.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.14 < $\alpha$ < 0.16.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.16 < $\alpha$ < 0.18.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.18 < $\alpha$ < 0.20.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.20 < $\alpha$ < 0.22.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.22 < $\alpha$ < 0.24.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.24 < $\alpha$ < 0.26.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.26 < $\alpha$ < 0.28.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.28 < $\alpha$ < 0.30.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.30 < $\alpha$ < 0.32.
The expected and observed limits on $m_{4j}$ for Gaussian signal templates using a 4-parameter fit function for 0.32 < $\alpha$ < 0.34.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.10 < $\alpha$ < 0.12.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.12 < $\alpha$ < 0.14.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.14 < $\alpha$ < 0.16.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.16 < $\alpha$ < 0.18.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.18 < $\alpha$ < 0.20.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.20 < $\alpha$ < 0.22.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.22 < $\alpha$ < 0.24.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.24 < $\alpha$ < 0.26.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.26 < $\alpha$ < 0.28.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.28 < $\alpha$ < 0.30.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.30 < $\alpha$ < 0.32.
The expected and observed limits on $m_{\langle 2j \rangle}$ for Gaussian signal templates using a 4-parameter fit function for 0.32 < $\alpha$ < 0.34.
The product of the analysis acceptance and selection efficiency for all analysis selection criteria is shown as a function of $m_Y$ and $m_{X}/m_{Y}$.
The cross-section of the signal samples is shown as a function of $m_Y$ and $m_{X}/m_{Y}$.
Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or $b$-jet and either one lepton ($e$, $\mu$), photon, or second light jet or $b$-jet in the anomalous regions. No significant deviations from the background hypotheses are observed.
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRGGWZ-H.
N-1 distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$of observed data and expected background in SRGGSlep-M.
N-1 distribution for $\sum{p_{\mathrm{T}}^\mathrm{jet}}$of observed data and expected background in SRUDD-ge2b.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRLQD.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSWZ-H.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSSlep-H(loose).
Signal acceptance for SRGGWZ-H signal region from Fig 10(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-H signal region from Fig 15(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-M signal region from Fig 10(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-M signal region from Fig 15(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-L signal region from Fig 10(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-L signal region from Fig 15(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-L signal region from Fig 12(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-L signal region from Fig 17(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-M signal region from Fig 12(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-M signal region from Fig 17(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-H signal region from Fig 12(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-H signal region from Fig 17(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRUDD-1b signal region from Fig 14(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-1b signal region from Fig 19(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-2b signal region from Fig 14(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-2b signal region from Fig 19(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge2b signal region from Fig 14(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge2b signal region from Fig 19(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge3b signal region from Fig 14(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge3b signal region from Fig 19(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRLQD signal region from Fig 14(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal efficiency for SRLQD signal region from Fig 19(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal acceptance for SRSSWZ-L signal region from Fig 11(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-L signal region from Fig 16(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-ML signal region from Fig 11(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-ML signal region from Fig 16(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-MH signal region from Fig 11(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-MH signal region from Fig 16(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-H signal region from Fig 11(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-H signal region from Fig 16(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H signal region from Fig 13(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H signal region from Fig 18(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-MH signal region from Fig 13(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-MH signal region from Fig 18(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-L signal region from Fig 13(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-L signal region from Fig 18(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-ML signal region from Fig 13(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-ML signal region from Fig 18(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H(loose) signal region from Fig 13(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H(loose) signal region from Fig 18(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-H in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-M in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-L in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-L in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-M in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-H in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-1b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge3b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRLQD in a susy scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2200 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1870 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-L in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-ML in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-MH in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-H in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-MH in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-L in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-ML in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H(loose) in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Cross-section upper limits at 95% CL from Fig1(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Cross-section upper limits at 95% CL from Fig1(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Cross-section upper limits at 95% CL from Fig1(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
A search is reported for excited $\tau$-leptons and leptoquarks in events with two hadronically decaying $\tau$-leptons and two or more jets. The search uses proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015-2018. The total integrated luminosity is 139 fb$^{-1}$. The excited $\tau$-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary $\tau$-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a $\tau$-lepton. No excess over the background prediction is observed. Excited $\tau$-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale $\Lambda$ set to 10 TeV. At the extreme limit of model validity where $\Lambda$ is set equal to the excited $\tau$-lepton mass, excited $\tau$-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a $\tau$-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region.
A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.
A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle $X$ decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to $qX$, with $X \rightarrow b\bar{b}$, and the other top quark decays according to the Standard Model, with the $W$ boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from $b$-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction $\mathcal{B}$($t \rightarrow uX$) and between 0.018% and 0.078% for the branching fraction $\mathcal{B}$($t \rightarrow cX$), for masses of the scalar particle $X$ between 20 and 160 GeV.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
A search for dijet resonances in events with at least one isolated charged lepton is performed using $139~{\text{fb}}^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded by the ATLAS detector at the LHC. The dijet invariant-mass ($m_{jj}$) distribution constructed from events with at least one isolated electron or muon is searched in the region $0.22 < m_{jj} < 6.3$ TeV for excesses above a smoothly falling background from Standard Model processes. Triggering based on the presence of a lepton in the event reduces limitations imposed by minimum transverse momentum thresholds for triggering on jets. This approach allows smaller dijet invariant masses to be probed than in inclusive dijet searches, targeting a variety of new-physics models, for example ones in which a new state is produced in association with a leptonically decaying $W$ or $Z$ boson. No statistically significant deviation from the Standard Model background hypothesis is found. Limits on contributions from generic Gaussian signals with widths ranging from that determined by the detector resolution up to 15% of the resonance mass are obtained for dijet invariant masses ranging from 0.25 TeV to 6 TeV. Limits are set also in the context of several scenarios beyond the Standard Model, such as the Sequential Standard Model, a technicolor model, a charged Higgs boson model and a simplified Dark Matter model.
Observed and expected 95% credibility-level upper limits on the cross-section times acceptance times branching ratio for the techicolor model with production of $\rho_T$ decaying to $\pi_T W^{\pm}$. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.
Observed and expected 95% credibility-level upper limits on the cross-section times acceptance times branching ratio for $W' \to Z' W^{\pm}$ production in the Sequential Standard Model. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the $tbH^+$ model. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the simplified dark-matter model. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.
The 95% CL upper limits on the cross-section times acceptance times efficiency times branching ratio, as a function of the resonance mass, $m_X$. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV. The limits are shown for a generic Gaussian signal with the width $\sigma_{X}/m_{X} =0$. The table also shows the expected limits and the corresponding $1\sigma$ and $2\sigma$ bands. The tabulated data has been used in Figure 04 of the publication.
The 95% CL upper limits on the cross-section times acceptance times efficiency times branching ratio, as a function of the resonance mass, $m_X$. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV. The limits are shown for a generic Gaussian signal with the width $\sigma_{X}/m_{X} =0.05$. The table also shows the expected limits and the corresponding $1\sigma$ and $2\sigma$ bands. The tabulated data has been used in Figure 04 of the publication.
The 95% CL upper limits on the cross-section times acceptance times efficiency times branching ratio, as a function of the resonance mass, $m_X$. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV. The limits are shown for a generic Gaussian signal with the width $\sigma_{X}/m_{X} =0.10$. The table also shows the expected limits and the corresponding $1\sigma$ and $2\sigma$ bands. The tabulated data has been used in Figure 04 of the publication.
The 95% CL upper limits on the cross-section times acceptance times efficiency times branching ratio, as a function of the resonance mass, $m_X$. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV. The limits are shown for a generic Gaussian signal with the width $\sigma_{X}/m_{X} =0.15$. The table also shows the expected limits and the corresponding $1\sigma$ and $2\sigma$ bands. The tabulated data has been used in Figure 04 of the publication.
Truth-level cross-sections ($\sigma$), acceptances ($A$), detector efficiencies ($\epsilon$) and the detector-level visible cross-sections ($\sigma^{vis}$) for different masses of the $\rho_T$ model. Only statistical uncertainties on the acceptances and efficiencies are shown. The acceptance is defined by requiring jets with $m_{jj} >216$ GeV and $|\eta|<2.4$, as well as isolated leptons ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV and $|\eta^\mu|<2.5$ ($|\eta^e|<2.47$, excluding of the gap region 1.37--1.52) for muons (electrons). The tabulated data has been used in Figure 05a of the publication.
Truth-level cross-sections ($\sigma$), acceptances ($A$), detector efficiencies ($\epsilon$) and the detector-level visible cross-sections ($\sigma^{vis}$) for different masses of the $W'/Z'$ SSM model. Only statistical uncertainties on the acceptances and efficiencies are shown. The acceptance is defined by requiring jets with $m_{jj} >216$ GeV and $|\eta|<2.4$, as well as leptons with $p_\text{T}^\ell \ge 60$ GeV and $|\eta^\mu|<2.5$ ($|\eta^e|<2.47$ with exclusion of the gap region 1.37-1.52) for muons (electrons). The tabulated data has been used in Figure 05b of the publication.
Truth-level cross-sections ($\sigma$), acceptances ($A$), detector efficiencies ($\epsilon$) and the detector-level visible cross-sections ($\sigma^{vis}$) for different masses of the $H^+$ model for $\tan \beta=1$. Only statistical uncertainties on the acceptances and efficiencies are shown. The acceptance correction was calculated assuming $\tan \beta=1$ and the narrow-width approximation. The acceptance is defined by requiring jets with $m_{jj} >216$ GeV and $|\eta|<2.4$, as well as leptons with $p_\text{T}^\ell \ge 60$ GeV and $|\eta^\mu|<2.5$ ($|\eta^e|<2.47$ with exclusion of the gap region 1.37-1.52) for muons (electrons). The tabulated data has been used in Figure 05c of the publication.
Truth-level cross-sections ($\sigma$), acceptances ($A$), detector efficiencies ($\epsilon$) and the detector-level visible cross-sections ($\sigma^{vis}$) for different masses of the $Z'$ (DM) model. Only statistical uncertainties on the acceptances and efficiencies are shown. The acceptance is defined by requiring jets with $m_{jj} > 216$ GeV and $|\eta|<2.4$, as well as leptons with $p_\text{T}^\ell \ge 60$ GeV and $|\eta^\mu|<2.5$ ($|\eta^e|<2.47$ with exclusion of the gap region 1.37-1.52) for muons (electrons). The tabulated data has been used in Figure 05d of the publication.
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.