In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.
Updated values of coupling constants and electroweak mixing angle.
Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.
Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.
Cross sections for inclusive direct photon production in π−p, π+p, and pp collisions at 300 GeV/c are measured at transverse momenta pT up to 7 GeV/c (xT=0.6). For π−p→γX also the rapidity distribution is presented. The cross-section ratio σ(π−p→γX)/σ(π+p→γX) is found to be 1 at pT=4 GeV/c and rises with increasing pT. This observation signals the occurrence of valence-quark–antiquark annihilation. The results are in good agreement with QCD predictions.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.
Cross sections for inclusive π0 production at large transverse momentum pT were measured in π−p, π+p, and pp collisions at 300 GeV/c. The cross-section ratio σ(π−p→π0X)/σ(π+p→π0X) was found to be consistent with unity in the pT region of 1 to 5 GeV/c. The cross-section ratio σ(π+p→π0X)/σ(pp→π0X) however is growing with increasing pT and increasing π0 c.m.-system rapidity in agreement with parton-model expectations, where the partons in the pions have on average higher momenta than in the proton.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.
The NA24 experiment at CERN investigated inclusive γγ, π0π0, and γπ0 final states in the mass range between 4 and 9 GeV/c2 produced in π−p, π+p, and pp reactions at a c.m.-system energy s=23.7 GeV. The π0π0 cross sections agree well with expectations of the quark-parton model. For γπ0 production in π−p and pp reactions, a clear signal is observed and cross sections are shown. The production of γγ events was observed with a statistical significance of 2.9σ in π−p reactions. The cross section is in agreement with a higher-order QCD prediction.
Cross sections are averaged over the transverse momentum differences up to a value which is 1.10 GeV for all points except the first two which are 0.5 and 0.75 GeV respectively.
No description provided.
Maximum accepted transverse momentum difference of pi0 pair is 1 GeV. Inclusive cross section integrated over the total geometrical acceptance of the detector.
None
No description provided.
The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
Neutron-proton total cross-sections were measured in the momentum range from 8 GeV/ c to 21 GeV/ c with an accuracy of better than 2% using a 0 o neutron beam at the CERN Proton Synchrotron. The np total cross-section drops from 39.7 mb at 8 GeV/ c at 21 GeV/ c , and thus follows closely the pp total cross-sections in this momentum interval.
No description provided.
The results of the total cross section measurements of neutrons on protons, deuterons and nuclei C, O, Al, Cu, Sn, Pb in the energy range of 28–54 GeV are reported.
.
.
.