Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.
The measured mass differences between vector and ground B meson states.
Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.
Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.
Summary of results in terms of best fit value of the Wilson coefficients and the intervals where the test statistic is below 1 and 4, with up to the linear and quadratic terms in the SMEFT parameterization.
Profiled limits on the energy scale $\Lambda$ for three different assumptions for each Wilson coefficient while fixing the other Wilson coefficients to their SM values with up to the linear and quadratic terms in SMEFT parameterization.
Observed two-dimensional likelihood scans for $c_{Hq}^{(1)}$ vs. $c_{Hq}^{(3)}$ while allowing the other coefficients to float freely at each point of the sca.
An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.
prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
prompt $\psi(2S)$ $\lambda_\theta$
Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ($\mathrm{t\bar{t}}$) events produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observable $D$ is derived from the top quark spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix and measured in the region of the $\mathrm{t\bar{t}}$ production threshold. Values of $D$$\lt$$-$1/3 are evidence of entanglement and $D$ is observed (expected) to be $-$0.480 $^{+0.026}_{-0.029}$$(-$0.467 $^{+0.026}_{-0.029})$ at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within $\mathrm{t\bar{t}}$ pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.
Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.
Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when excluding contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.
Expected values from various Monte Carlo predictions for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ both when excluding and including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the Monte Carlo statistical uncertainty whereas the second uncertainty is the systematic uncertainty which includes PDF and scale uncertainties.