Date

Measurements of the inclusive W and Z boson production cross sections and their ratios in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SMP-22-017, 2025.
Inspire Record 2900021 DOI 10.17182/hepdata.157226

Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.

17 data tables

Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.

Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.

Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.

More…

Constraints on standard model effective field theory for a Higgs boson produced in association with W or Z bosons in the H$\to\mathrm{b\bar{b}}$ decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 03 (2025) 114, 2025.
Inspire Record 2852160 DOI 10.17182/hepdata.155497

A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.

32 data tables

Summary of results in terms of best fit value of the Wilson coefficients and the intervals where the test statistic is below 1 and 4, with up to the linear and quadratic terms in the SMEFT parameterization.

Profiled limits on the energy scale $\Lambda$ for three different assumptions for each Wilson coefficient while fixing the other Wilson coefficients to their SM values with up to the linear and quadratic terms in SMEFT parameterization.

Observed two-dimensional likelihood scans for $c_{Hq}^{(1)}$ vs. $c_{Hq}^{(3)}$ while allowing the other coefficients to float freely at each point of the sca.

More…

Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 072003, 2025.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2024) 172, 2024.
Inspire Record 2812281 DOI 10.17182/hepdata.150033

The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.

11 data tables

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

More…

Measurement of the polarizations of prompt and non-prompt J/$\psi$ and $\psi$(2S) mesons produced in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 858 (2024) 139044, 2024.
Inspire Record 2800640 DOI 10.17182/hepdata.150034

The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.

4 data tables

prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

More…

Observation of quantum entanglement in top quark pair production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Rept.Prog.Phys. 87 (2024) 117801, 2024.
Inspire Record 2795514 DOI 10.17182/hepdata.145665

Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ($\mathrm{t\bar{t}}$) events produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observable $D$ is derived from the top quark spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix and measured in the region of the $\mathrm{t\bar{t}}$ production threshold. Values of $D$$\lt$$-$1/3 are evidence of entanglement and $D$ is observed (expected) to be $-$0.480 $^{+0.026}_{-0.029}$$(-$0.467 $^{+0.026}_{-0.029})$ at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within $\mathrm{t\bar{t}}$ pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.

3 data tables

Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.

Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when excluding contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.

Expected values from various Monte Carlo predictions for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ both when excluding and including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the Monte Carlo statistical uncertainty whereas the second uncertainty is the systematic uncertainty which includes PDF and scale uncertainties.


Observation of electroweak production of $W^+W^-$ in association with jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2024) 254, 2024.
Inspire Record 2766986 DOI 10.17182/hepdata.153883

A measurement of the production of $W$ bosons with opposite electric charges in association with two jets is presented based on 140 fb$^{-1}$ of data collected by the ATLAS detector in proton-proton collisions at $\sqrt{s}=13$ TeV. The analysis is sensitive to the scattering of $W$ bosons, which is of particular interest in the ATLAS physics programme as it can be used to probe the electroweak symmetry breaking mechanism of the Standard Model. This signal is observed with a significance of 7.1 standard deviations above the background expectation, while 6.2 standard deviations were expected. The measured cross-section is determined in a signal-enriched fiducial volume and is found to be $2.7\pm0.5$ fb, which is consistent with the theoretical prediction of $2.20^{+0.14}_{-0.13}$ fb.

2 data tables

Measurement of the signal strength $\mu=\mu(EWK\;W^+ W^- jj)$ from the likelihood fit described in Section 8 together with the normalisations of the backgrounds originating from the top quark and strong $W^+ W^- jj$ events.

Measurement of the measured and predicted signal cross-section.


A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb$^{-1}$ of $pp$ collision data collected by the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2024) 250, 2024.
Inspire Record 2759516 DOI 10.17182/hepdata.144439

This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and corresponds to an integrated luminosity of 139fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$, where the $\tilde{\chi}_1^0$ is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of $tc + E_{\text{T}}^{\text{miss}}$. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the $m(\tilde{t}_1)$ vs $m(\tilde{\chi}_1^0)$ plane and, in addition, limits on the branching ratio of the $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$ decay as a function of $m(\tilde{t}_1)$ are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.

66 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=mass_obs">Observed exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_exp">Expected exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_1">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_2">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_obs">Observed exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_exp">Expected exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_1">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_2">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mass_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> <li><a href="?table=mass_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRA_ntop">SRA region number of top-tagged jets distribution</a> <li><a href="?table=SRA_mttwo">SRA region $m_{\mathrm{T2}}(j^{b}_{R=1.0}, c)$ distribution</a> <li><a href="?table=SRB_ptc">SRB region leading c-tagged jet $p_{\mathrm{T}}$</a> <li><a href="?table=SRB_mtj">SRB region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRC_metsig">SRC region missing transverse momentum significance distribution</a> <li><a href="?table=SRC_mtj">SRC region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRD_NN">SRD NN signal score distribution</a> <li><a href="?table=SRD_meff">SRD $m_{\mathrm{eff}}$ distribution</a> </ul> <b>Pull distributions:</b> <ul> <li><a href="?table=SRABCPull">Pull plots showing the SRA, SRB and SRC post-fit data and SM agreement using the background-only fit configuration</a> <li><a href="?table=SRDPull">Pull plots showing the SRD post-fit data and SM agreement using the background-only fit configuration</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRA">Cutflow of 3 signal points in the SRA region.</a> <li><a href="?table=cutflow_SRB">Cutflow of 3 signal points in the SRB region.</a> <li><a href="?table=cutflow_SRC">Cutflow of 3 signal points in the SRC region.</a> <li><a href="?table=cutflow_SRD750">Cutflow of 3 signal points in the SRD750 region.</a> <li><a href="?table=cutflow_SRD1000">Cutflow of 3 signal points in the SRD1000 region.</a> <li><a href="?table=cutflow_SRD1250">Cutflow of 3 signal points in the SRD1250 region.</a> <li><a href="?table=cutflow_SRD1500">Cutflow of 3 signal points in the SRD1500 region.</a> <li><a href="?table=cutflow_SRD1750">Cutflow of 3 signal points in the SRD1750 region.</a> <li><a href="?table=cutflow_SRD2000">Cutflow of 3 signal points in the SRD2000 region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>SRA_bin1:</b> <a href="?table=Acc_SRA_bin1">Acceptance table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin1">Efficiency table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRA_bin2:</b> <a href="?table=Acc_SRA_bin2">Acceptance table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin2">Efficiency table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin1:</b> <a href="?table=Acc_SRB_bin1">Acceptance table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin1">Efficiency table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin2:</b> <a href="?table=Acc_SRB_bin2">Acceptance table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin2">Efficiency table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin3:</b> <a href="?table=Acc_SRB_bin3">Acceptance table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin3">Efficiency table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin1:</b> <a href="?table=Acc_SRC_bin1">Acceptance table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin1">Efficiency table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin2:</b> <a href="?table=Acc_SRC_bin2">Acceptance table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin2">Efficiency table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin3:</b> <a href="?table=Acc_SRC_bin3">Acceptance table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin3">Efficiency table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin4:</b> <a href="?table=Acc_SRC_bin4">Acceptance table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin4">Efficiency table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin1:</b> <a href="?table=Acc_SRD_bin1">Acceptance table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin1">Efficiency table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin2:</b> <a href="?table=Acc_SRD_bin2">Acceptance table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin2">Efficiency table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin3:</b> <a href="?table=Acc_SRD_bin3">Acceptance table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin3">Efficiency table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin4:</b> <a href="?table=Acc_SRD_bin4">Acceptance table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin4">Efficiency table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin5:</b> <a href="?table=Acc_SRD_bin5">Acceptance table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin5">Efficiency table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin6:</b> <a href="?table=Acc_SRD_bin6">Acceptance table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin6">Efficiency table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.

Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$ and a $+1 \sigma$ deviation of the NNLO+NNLL theoretical cross-section of a $\tilde{t}_1$ pair-production.

More…

Measurement of simplified template cross sections of the Higgs boson produced in association with W or Z bosons in the H $\to$$\mathrm{b\bar{b}}$ decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 109 (2024) 092011, 2024.
Inspire Record 2736546 DOI 10.17182/hepdata.145636

Differential cross sections are measured for the standard model Higgs boson produced in association with vector bosons (W, Z) and decaying to a pair of b quarks. Measurements are performed within the framework of the simplified template cross sections. The analysis relies on the leptonic decays of the W and Z bosons, resulting in final states with 0, 1, or 2 electrons or muons. The Higgs boson candidates are either reconstructed from pairs of resolved b-tagged jets, or from single large distance parameter jets containing the particles arising from two b quarks. Proton-proton collision data at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2016-2018 and corresponding to a total integrated luminosity of 138 fb$^{-1}$, are analyzed. The inclusive signal strength, defined as the product of the observed production cross section and branching fraction relative to the standard model expectation, combining all analysis categories, is found to be $\mu$ = 1.15 $^{+0.22}_{-0.20}$. This corresponds to an observed (expected) significance of 6.3 (5.6) standard deviations.

3 data tables

Measured product of cross section and branching fraction as well as signal strength, defined as the ratio of the observed signal cross section to the Standard Model expectation, in the V(leptonic)H STXS process scheme from the analysis of the 2016, 2017 and 2018 data. If the observed signal strength for a given STXS bin is negative, no uncertainty is reported for the associated bin.

Signal strength per signal process. All results combine the 2016, 2017 and 2018 data-taking years.

Signal strength per analysis channels. All results combine the 2016, 2017 and 2018 data-taking years.


Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

30 data tables

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.

More…