Date

Observation of Two-source Interference in the Photoproduction Reaction $Au Au \to Au Au \rho^0$

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 112301, 2009.
Inspire Record 804391 DOI 10.17182/hepdata.98964

In ultra-peripheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a $ρ^0$. The $ρ^0$ production occurs in two well-separated (median impact parameters of 20 and 40 fermi for the cases considered here) nuclei, so the system forms a 2-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing $ρ^0$ production. Since the $ρ^0$ decay before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled non-local wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is $87% \pm 5% {\rm (stat.)}\pm 8%$ (syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors, of 23% at the 90% confidence level.

7 data tables

Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.

Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.

Raw (uncorrected) ρ0 $t_{\perp}$-spectrum in the range 0.0 < |y| < 0.5 for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term (“Int”), while the solid histogram is a simulation without interference (“NoInt”). The handful of events histogrammed at the bottom of the plot are the wrong-sign ($\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$) events, used to estimate the combinatorial background.

More…

Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 673 (2009) 183-191, 2009.
Inspire Record 800796 DOI 10.17182/hepdata.101351

We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|&lt;0.5) for 0.4 &lt; pT &lt; 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

8 data tables

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Upper panels. $N_{\scriptsize{\mbox{part}}}$ scaled ($R^{N_{\scriptsize{\mbox{part}}}}_{AA}$) nuclear modification factors as a function of $p_{T}$ of $\phi$ mesons for $0-10\%$ and $20-30\%$ $Cu+Cu$ and $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. Lower panel. Same as above for $N_{\scriptsize{\mbox{bin}}}$ scaled ($R^{N_{\scriptsize{\mbox{bin}}}}_{AA}$) nuclear modification factor. The error bars represent the statistical and systematic errors added in quadrature. The shaded band in upper panel around 1 at $p_{T}=4.5-5.5$ GeV/$c$ in the right side reflects the uncertainty in $N_{\scriptsize{\mbox{part}}}$ and that on the lower panel for $N_{\scriptsize{\mbox{bin}}}$ calculation for central $Au+Au$ collisions. The respective uncertainties for central $Cu+Cu$ collisions are of similar order.

More…

Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

81 data tables

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Upper panels: same-event (full points) and mixed-event (solid line) $K^{+}K^{-}$ invariant mass distributions at 0.6 < $p_{T}$ < 1.4 GeV/c in p + p 200 GeV collisions (a), 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 62.4 GeV collisions (60–80%) (c), and 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 200 GeV collisions (0–10%) (e). Lower panels: the corresponding $\phi$ meson mass peaks after subtracting the background. Dashed curves show a Breit-Wigner + linear background function fit in (b), (d). In (f), both linear and quadratic backgrounds are shown as dashed and dot-dashed lines, respectively.

More…

Measurement of sigma(p anti-p ---> Z + X) Br(Z ---> tau+tau-) at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 670 (2009) 292-299, 2009.
Inspire Record 792818 DOI 10.17182/hepdata.42676

We present a measurement of the cross section for Z boson production times the branching fraction to tau lepton pairs sigma(ppbar -> Z + X) Br(Z -> tau+ tau-) in proton-antiproton collisions at center of mass energy 1.96 TeV. The measurement is performed in the channel in which one tau lepton decays into a muon and neutrinos, and the other tau lepton decays hadronically or into an electron and neutrinos. The data sample corresponds to an integrated luminosity of 1.0 inverse fb collected with the D0 detector at the Fermilab Tevatron Collider. The sample contains 1511 candidate events with an estimated 20% background from jets or muons misidentified as tau leptons. We obtain sigma Br = 240 +/- 8 (stat) +/- 12 (sys) +/- 15 (lum) pb, which is consistent with the standard model prediction.

1 data table

Measured cross section times branching ratio to TAU+ TAU-.


Measurement of differential Z / gamma* + jet + X cross sections in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 669 (2008) 278-286, 2008.
Inspire Record 792812 DOI 10.17182/hepdata.49090

We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.

6 data tables

Measured cross section as a function of the jet transverse momentum.

Measured cross section as a function of the jet rapidity.

Measured cross section as a function of the Z0 transverse momentum.

More…

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

68 data tables

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the E-FTPC (Au-direction) within $−3.8 < |\eta| < −2.8$ in d+Au collisions at 200 GeV. The shaded regions indicate the centrality bins used in the analysis.

More…

Measurement of the electron charge asymmetry in p anti-p ---> W + X ---> e nu + X events at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 211801, 2008.
Inspire Record 791230 DOI 10.17182/hepdata.42683

We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.

1 data table

Folded electron charged asymmetry.


Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

11 data tables

Total cross section for dijet production. Errors are combined statistics and systematics.

Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.

Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.

More…

Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 024906, 2009.
Inspire Record 791177 DOI 10.17182/hepdata.98972

We present measurements of net charge fluctuations in $Au + Au$ collisions at $\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\nu_{+-{\rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

10 data tables

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced within pseudorapidity $|\eta|$ < 0.5, as function of the number of participating nucleons.

(Color online) Corrected values of dynamical net charge fluctuations ($\nu^{corr}_{+−,dyn}$) as a function of $\sqrt{s_{NN}}$. See text for details.

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced with pseudorapidity $|\eta|$ < 0.5 scaled by (a) the multiplicity, $dN_{ch}/d\eta$. The dashed line corresponds to charge conservation effect and the solid line to the prediction for a resonance gas, (b) the number of participants, and (c) the number of binary collisions.

More…

System-size independence of directed flow at the Relativistic Heavy-Ion Collider

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 101 (2008) 252301, 2008.
Inspire Record 790350 DOI 10.17182/hepdata.102949

We measure directed flow ($v_1$) for charged particles in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} =$ 200 GeV and 62.4 GeV, as a function of pseudorapidity ($\eta$), transverse momentum ($p_t$) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all existing models, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to different collision systems, and investigate possible explanations for the observed sign change in $v_1(p_t)$.

11 data tables

Charged particle $v_1(\eta)$ for 0-5 % centrality in Au+Au collisions at 200 GeV.

$<P_x>/<P_t>$ of charged particles as a function of pseudorapidity, for centrality 0-5% in Au+Au collisions at 200 GeV.

Charged particle $v_1(\eta)$ for 5-40 % centrality in Au+Au collisions at 200 GeV.

More…