Date

Directed flow in Au + Au collisions at s(NN)**(1/2) = 62-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034903, 2006.
Inspire Record 695404 DOI 10.17182/hepdata.102947

We present the directed flow ($v_1$) measured in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 62.4 GeV in the mid-pseudorapidity region $|\eta|<1.3$ and in the forward pseudorapidity region $2.5 < |\eta| < 4.0$. The results are obtained using the three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the Relativistic Heavy Ion Collider (RHIC), the standard method with the event plane reconstructed from spectator neutrons. Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle directed flow is in the direction opposite to that of fragmentation neutrons.

19 data tables

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

More…

Proton Lambda correlations in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 74 (2006) 064906, 2006.
Inspire Record 696676 DOI 10.17182/hepdata.98927

We report on p-Lambda, p-Lambda bar, p bar-Lambda and p bar-Lambda bar correlation functions constructed in central Au-Au collisions at sqrt(s_NN)=200GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p-Lambda and p bar-Lambda bar correlation functions. They are found to be smaller than the pion source size also measured by the STAR detector. This could be a consequence of the collision fireball's collective expansion. The p-Lambda bar and p bar-Lambda correlations, which are measured for the first time, exhibit a large anti-correlation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function.

8 data tables

Invariant mass of the selected $\Lambda$ background not substracted with $0.3 < p_t < 2.0$ GeV/c. The y axis represents the number of candidates used in this analysis.

Invariant mass of the selected $\bar{\Lambda}$ background not substracted with $0.3 < p_t < 2.0$ GeV/c. The y axis represents the number of candidates used in this analysis.

The purity and momentum-resolution corrected correlation functions $C_{true}(k^{*})$ for $p-\Lambda$, $\bar{p}-\bar{\Lambda}$ (a), $\bar{p}-\Lambda$, $p-\bar{\Lambda}$ (b). Curves correspond to fits done using the Lednicky and Lyuboshitz analytical model [12].

More…

Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

11 data tables

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of collisions in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to number of collisions, in the PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{coll}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{coll}$ calculations.

More…

Strangelet search at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 011901, 2007.
Inspire Record 698939 DOI 10.17182/hepdata.104503

We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at $\sNN = 200 $GeV near beam rapidities at the STAR detector. We have sensitivity to metastable strangelets with lifetimes of order $\geq 0.1 ns$, in contrast to limits over ten times longer in AGS studies and longer still at the SPS. Upper limits of a few 10^{-6} to 10^{-7} per central Au+Au collision are set for strangelets with mass ${}^{>}_{\sim}30$ GeV/c^{2}.

2 data tables

Upper limit for neutral (Z=0) and charged (Z=5) strangelet as a function of mass.

Upper limit for charged (Z=1) strangelet as a function of lifetime.


A Study of e+ e- ---> p anti-p using initial state radiation with BABAR

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 73 (2006) 012005, 2006.
Inspire Record 700020 DOI 10.17182/hepdata.41831

The e+e- -> p anti-p cross section is determined over a range of p anti-p masses, from threshold to 4.5 GeV/c^2, by studying the e+e- -> p anti-p gamma process. The data set corresponds to an integrated luminosity of 232 fb^-1, collected with the BABAR detector at the PEP-II storage ring, at an e+e- center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, is measured for p anti-p masses below 3 GeV/c^2: its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c^2. We also measure J/psi -> p anti-p and psi(2S) -> p anti-p branching fractions and set an upper limit on Y(4260) -> p anti-p production and decay.

2 data tables

The cross section and effective form factor for E+ E- --> PBAR P.

The cross section and effective form factor for E+ E- --> PBAR P.


Identified hadron spectra at large transverse momentum in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 637 (2006) 161-169, 2006.
Inspire Record 709170 DOI 10.17182/hepdata.85695

We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| < 0.5) over the range of 0.3 < pT < 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 < pT < 5 GeV/c.

26 data tables

Transverse momentum distribution for $\pi^+$ production in d+Au minbias events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in p+p NSD events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in d+Au collisions with centrality 0-20% in the mid rapidity region, $|y|<0.5$.

More…

The e+ e- ---> 3(pi+ pi-), 2(pi+ pi- pi0) and K+ K- 2(pi+ pi-) cross sections at center-of-mass energies from production threshold to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 73 (2006) 052003, 2006.
Inspire Record 709730 DOI 10.17182/hepdata.41843

We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.

3 data tables

The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.

The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.

The cross section for E+ E- --> K+ K- 2PI+ 2PI- as measured with the ISR data. Errors are statistical only.


Forward neutral pion production in p+p and d+Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 152302, 2006.
Inspire Record 710186 DOI 10.17182/hepdata.98968

Measurements of the production of forward pi0 mesons from p+p and d+Au collisions at sqrt(s_NN)=200 GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as eta increases, decreasing to ~30% of the p+p yield at =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward pi0 with charged hadrons at eta~0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei.

7 data tables

Inclusive $\pi^{0}$ cross section for p+p collisions versus the leading $\pi^{0}$ energy ($E_{\pi}$) averaged over 5 GeV bins at fixed pseudorapidity ($\eta$). The error bars combine statistical and point-to-point systematic errors. The curves are NLO pQCD calculations using two sets of fragmentation functions (FF).

Inclusive $\pi^{0}$ cross section per binary collision for d+Au collisions, as in Fig. 1. The curves are calculations described in the text. (Inset) Diphoton invariant mass spectrum for data (stars), normalized to simulation (histogram).

Nuclear modification factor ($R_{dAu}$) for minimum-bias d+Au collisions versus transverse momentum ($p_{T}$). The solid circles are for $\pi^{0}$ mesons. The open circles and boxes are for negative hadrons [10]. The error bars are statistical, while the shaded boxes are point-to-point systematic errors. (Inset) $R_{dAu}$ for $\pi^{0}$ mesons with the ratio of curves in Figs. 2 and 1.

More…

Direct observation of dijets in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 162301, 2006.
Inspire Record 715470 DOI 10.17182/hepdata.98572

The STAR Collaboration at RHIC reports measurements of azimuthal correlations of high transverse momentum (p_T) charged hadrons in Au+Au collisions at higher p_T than reported previously. As p_T is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.

5 data tables

Centrality dependence (number of participants Npart) of near-side ($|\Delta\phi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.

Centrality dependence (number of participants Npart) of away-side ($|\Delta\phi-\pi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.

Trigger-normalized fragment distribution $D(z_T)$ with $8 < p_T^{trig} < 15$ GeV/c for near-side ($|\Delta\phi|$<0.63) correlations in d+Au collisions at 200 GeV.

More…

Strange baryon resonance production in s(NN)**(1/2) = 200-GeV p + p and Au + Au collisions.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 132301, 2006.
Inspire Record 715471 DOI 10.17182/hepdata.102937

We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

2 data tables

The transverse mass spectra for $\Sigma^{∗}$ and $\Lambda^{∗}$ in p+p and in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Statistical and systematical errors are included.

Resonance to stable particle ratios for p + p and Au + Au collisions. The ratios are normalized to unity in p + p and compared to thermal and UrQMD model predictions for central Au + Au [8, 12]. Statistical and systematic uncertainties are included in the error bars. (In the paper figure, K*/K dNCh/dy axis is shifted +30 for visual purposes to seperate the error bar contributions.)