The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
Total cross section for dijet production. Errors are combined statistics and systematics.
Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.
Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.
Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).
Exclusive cross section for two body neutral non-strange charm mesons.
Exclusive cross section for two body charged non-strange charm mesons.
Exclusive cross section for two body strange charm mesons.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the complete ('all') data sample taken in 1997.
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.
Measured NC reduced cross section for charm quarks.
Measuredstructure function F2 for charm quarks.
Measured NC reduced cross section for BOTTOM quarks.
Double-tagged interactions of photons with virtualities Q^2 between 10 GeV^2 and 200 GeV^2 are studied with the data collected by DELPHI at LEPII from 1998 to 2000, corresponding to an integrated luminosity of 550 pb^{-1}. The gam* gam* -> mu+mu- data agree with QED predictions. The cross-section of the reaction gam* gam* -> hadrons is measured and compared to the LO and NLO BFKL calculations.
Measured cross section for the process E+ E- --> E+ E- HADRONS.
Measured cross section for the process GAMMA* GAMMA* --> HADRONS.
Differential cross section for GAMMA* GAMMA* --> MU+ MU-.
Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.
Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.
Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.
Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.
The inclusive PI0 cross section as a function of the Bjorken X.
The inclusive PI0 cross section as a function of the Bjorken X.
The inclusive PI0 cross section as a function of the Bjorken X.
The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.
Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.
Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.
Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.
Cross sections for e^+p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of sqrt{s}=318 GeV with the ZEUS detector at HERA using an integrated luminosity of 63.2 pb^-1. The double-differential cross section, d^2sigma/dxdQ^2, is presented for 200 GeV^2 < Q^2 < 30000 GeV^2 and for 0.005 < x < 0.65. The single-differential cross-sections dsigma/dQ^2, dsigma/dx and dsigma/dy are presented for Q^2 > 200 GeV^2. The effect of Z-boson exchange is seen in dsigma/dx measured for Q^2 > 10000 GeV^2. The data presented here were combined with ZEUS e^+p neutral current data taken at sqrt{s}=300 GeV and the structure function F_2^{em} was extracted. All results agree well with the predictions of the Standard Model.
The single differential DSIG/DQ**2 cross section corrected to the electroweak Born level. See next table for a breakdown of the systematic errors.
Systematic errors with bin to bin correlations for the cross section DSIG/DQ**2.
Single differential cross section DSIG/DX for a Q**2 cut of 200 GeV**2 corrected to the electroweak Born level.