The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110 GeV/c. The dominant antihyperon contribution, namely $\bar{\Lambda} \to \bar{p} \pi^+$ decays from promptly produced $\bar{\Lambda}$ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models.
Ratio of the antihyperon decays to prompt antiproton production (R_Hbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.
Ratio of the Lbar decays to prompt antiproton production (R_Lbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.
The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.
Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2
Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
None
No description provided.
No description provided.
No description provided.
A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.
The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.
Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D^{*\pm} meson's transverse momentum pT (D^*) > 1.5 GeV and pseudorapidity |eta(D^*)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2s /dQ2dy are combined with earlier D^{*\pm} data, extending the kinematic range down to Q2 > 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.
The combined differential $D^{*\pm}$-production cross section as a function of $p_T(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $\eta(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $z(D^{*})$, with its uncorrelated and correlated uncertainties.