We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.
The measured analysing power at 12 MeV. Errors contain statistics and systematics added in quadrature.
We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05<xF<0.25 and pT<3.5 GeV/c. The data samples are constituted by about 12 000 J/ψ and 200 ψ′ produced in proton-silicon interactions at 800 GeV/c and decaying into opposite sign muons. The xF and pT distributions are compared with recent results from experiments E789 at the same energy and to leading order QCD predictions using the MRS D0 parametrization for the parton structure function. The measured shapes of the differential cross sections, except for the dσ/dxF at small xF, agree very well with the prediction, even though their value is quite a bit larger than the prediction. We also present the cosθ differential cross section of the J/ψ which indicates unpolarized production in contrast with color octet models predictions.
Additional systematic error given above.
Additional systematic error given above.
Additional systematic error given above.
Photoabsorption cross sections in hydrogen and deuterium have been measured from 3.7 to 17.9 GeV. The energy dependences are similar to those of strong-interaction total cross sections, as expected from the vector-meson-dominance model. The magnitude of σT(γp) can be compared with data from γp→ρ0p to determine a γ−p coupling constant, γρ24π=0.37±0.03. This value disagrees with that obtained on the ρ mass shell, and hence there is only qualitative agreement with the vector-meson-dominance model.
Axis error includes +- 1/1 contribution (CORRECTION OF ACCEPTANCE, POSSIBLE LOSSES, ETC).
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- K+ K- cross sections. The errors are statistical only.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.
Hadronic charm production was investigated with a two-arm magnetic spectrometer. The experiment was triggered on muons from the semileptonic decay of charm particles in one arm while reconstructing the mass of the associatively produced partners in the other arm. An excess of 153±46 combinations above background for the neutral D→Kπ mode was observed. This corresponds to a model-dependent DD¯ production cross section of 41±12+15−11 μb per nucleon, where the first uncertainty is statistical and the second is systematic.
Cross sections based on (1-ABS(XF))**3 production model.
Cross section based on (1-ABS(XF))**3 production model.
We have measured the total and subchannel cross sections for the reaction p¯p→p¯pπ+π− at 49 GeV/c. This reaction is dominated by two production mechanisms, diffraction and meson exchange. In addition, we have measured the total cross section for p¯p→p¯p2π+2π− and compared it to values at other momenta and with the corresponding pp interaction. Within the present statistics, no significant amount of exclusive annihilation is found into two, four, and six charged pions.
No description provided.
Inclusive η photoproduction has been studied at 9.7 GeV, on hydrogen and deuterium targets. A simple, parameter-free ρ0-dominance model adequately fits the forward cross sections, but overestimates the cross section at large momentum transfer.
No description provided.
We report measurements of inelastic photoproduction of ω and ρ± mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and ρ−Δ++ production, differential cross sections dσdt′ and spin density matrices are presented. For higher missing masses the cross sections dσdMX2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for ρ±.
CROSS SECTION PER NUCLEON FOR COMBINED HYDROGEN AND DEUTERIUM DATA ALLOWING FOR A GLAUBER CORRECTION FACTOR OF 0.88 FOR THE DEUTERIUM CROSS SECTIONS.
HYDROGEN AND DEUTERIUM DATA COMBINED BY AVERAGING.
OBTAINED BY EXTRAPOLATING A FIT TO D(SIG)/DT OVER -T = 0 TO 0.52 GEV**2.
Forward differential cross sections for isospin-1 bosons produced in p+p→d+x+ were measured using a deuteron missing-mass spectrometer at a small angle between 4.0- and 12.3−GeVc incident momentum. Differential cross sections for π+ and ρ+ were extracted from the spectra using phase-space backgrounds. They range from 10.4 to 0.4 μb/sr for π+ and from 1.4 to 0.3 μb/sr for ρ+. A bump near 6 GeVc appears in both dπ and dρ channels. No clear evidence is seen for higher-mass bosons. The possible δ+ cross sections average less than 0.01 μb/sr.
TECHNIQUE USED...ELECTRONIC. TABLE 1.
TECHNIQUE USED...MISSING MASS. BREIT WIGNER USED WITH FIXED WIDTH (150 MEV) AND VARIABLE MASS (LATTER VARIED WITH MOMENTA FROM 715 TO 765 MEV). 6 PERCENT NORMALIZATION ERROR; 20 PERCENT FROM BREIT WIGNER FIT. TABLE 1.
TECHNIQUE USED...MISSING MASS. CROSS-SECTIONS CORRESPOND TO VERY NARROW DELTA (962).