Version 3
High precision measurements of Z boson production in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 127 (2021) 102002, 2021.
Inspire Record 1915909 DOI 10.17182/hepdata.95231

The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.

12 data tables

The v2 of Z bosons in PbPb collisions for various centrality bins.

The v2 of Z bosons in PbPb collisions for various centrality bins.

The v2 of Z bosons in PbPb collisions for various centrality bins.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 807 (2020) 135595, 2020.
Inspire Record 1784454 DOI 10.17182/hepdata.95735

Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.

6 data tables

Summary of results for Inclusive HF muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for Inclusive HF muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for charm muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 082301, 2020.
Inspire Record 1752509 DOI 10.17182/hepdata.95128

The elliptic flow of muons from the decay of charm and bottom hadrons is measured in $pp$ collisions at $\sqrt{s}=13$ TeV using a data sample with an integrated luminosity of 150 pb$^{-1}$ recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range $|\eta|<2.4$. A significant non-zero elliptic anisotropy coefficient $v_{2}$ is observed for muons from charm decays, while the $v_{2}$ value for muons from bottom decays is consistent with zero within uncertainties.

4 data tables

Summary of results for inclusive muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

Summary of results for inclusive muon v2 as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of results for charm and bottom muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

More…

Measurement of prompt D0 meson azimuthal anisotropy in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 202301, 2018.
Inspire Record 1615780 DOI 10.17182/hepdata.78930

The prompt D$^0$ meson azimuthal anisotropy coefficients, $v_2$ and $v_3$, are measured at midrapidity ($|y| < 1.0$) in PbPb collisions at a center-of-mass energy $\sqrt{s_\mathrm{NN}} = $5.02 TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum ($p_\mathrm{T}$) range of 1 to 40 GeV/c, for central and midcentral collisions. The $v_2$ coefficient is found to be positive throughout the $p_\mathrm{T}$ range studied. The first measurement of the prompt D$^0$ meson $v_3$ coefficient is performed, and values up to 0.07 are observed for $p_\mathrm{T}$ around 4 GeV/c. Compared to measurements of charged particles, a similar $p_\mathrm{T}$ dependence, but smaller magnitude for $p_\mathrm{T} < $6 GeV/c, is found for prompt D$^0$ meson $v_2$ and $v_3$ coefficients. The results are consistent with the presence of collective motion of charm quarks at low $p_\mathrm{T}$ and a path length dependence of charm quark energy loss at high $p_\mathrm{T}$, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

6 data tables

Prompt D0 meson v2 in 0-10 centrality percentile in midrapidity (|y| < 1.0) in PbPb collisions at 5.02 TeV. The second sys is the systematic uncertainty from the nonprompt D0. The first sys is the systematic uncertainty from other sources.

Prompt D0 meson v2 in 10-30 centrality percentile in midrapidity (|y| < 1.0) in PbPb collisions at 5.02 TeV. The second sys is the systematic uncertainty from the nonprompt D0. The first sys is the systematic uncertainty from other sources.

Prompt D0 meson v2 in 30-50 centrality percentile in midrapidity (|y| < 1.0) in PbPb collisions at 5.02 TeV. The second sys is the systematic uncertainty from the nonprompt D0. The first sys is the systematic uncertainty from other sources.

More…

Version 2
Suppression and azimuthal anisotropy of prompt and nonprompt J/psi production in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 252, 2017.
Inspire Record 1489189 DOI 10.17182/hepdata.77015

The nuclear modification factor RAA and the azimuthal anisotropy coefficient v[2] of prompt and nonprompt (i.e. those from decays of b hadrons) J/psi mesons, measured from PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta pt > 6.5 GeV/c and rapidity abs(y) < 2.4, extending down to pt = 3 GeV/c in the 1.6 < abs(y) < 2.4 range. The v[2] of prompt J/psi is found to be nonzero, but with no strong dependence on centrality, rapidity, or pt over the full kinematic range studied. The measured v[2] of nonprompt J/psi is consistent with zero. The RAA of prompt J/psi exhibits a suppression that increases from peripheral to central collisions but does not vary as a function of either y or pt in the fiducial range. The nonprompt J/psi RAA shows a suppression which becomes stronger as rapidity or pt increase. The v[2] and nuclear suppression of open and hidden charm, and of open charm and beauty, are compared.

28 data tables

Prompt J/$\psi$ $v_{2}$ as a function of centrality. The average ${N}_{\rm part}$ values correspond to events flatly distributed across centrality.

Prompt J/$\psi$ $v_{2}$ as a function of centrality. The average ${N}_{\rm part}$ values correspond to events flatly distributed across centrality.

Prompt J/$\psi$ $v_{2}$ as a function of rapidity.

More…

Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 725 (2013) 60-78, 2013.
Inspire Record 1223123 DOI 10.17182/hepdata.66179

In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1<eta<4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p+Pb collisions. Despite the small transverse spatial extent of the p+Pb collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p+Pb reactions.

10 data tables

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 25-40 GeV.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 40-55 GeV.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 55-80 GeV.

More…

Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

81 data tables

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Upper panels: same-event (full points) and mixed-event (solid line) $K^{+}K^{-}$ invariant mass distributions at 0.6 < $p_{T}$ < 1.4 GeV/c in p + p 200 GeV collisions (a), 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 62.4 GeV collisions (60–80%) (c), and 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 200 GeV collisions (0–10%) (e). Lower panels: the corresponding $\phi$ meson mass peaks after subtracting the background. Dashed curves show a Breit-Wigner + linear background function fit in (b), (d). In (f), both linear and quadratic backgrounds are shown as dashed and dot-dashed lines, respectively.

More…

Azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 014904, 2005.
Inspire Record 660793 DOI 10.17182/hepdata.93262

The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.

53 data tables

Directed flow of charged hadrons v1{3} as a function of pseudorapidity for 10–70% centrality.

Directed flow of charged hadrons v1 {EP1,EP2} as a function of pseudorapidity for 20–60% centrality.

Charged hadron v2 for the centrality bins 5 to 10% and in steps of 10% starting at 10, 20, 30, 40, 50, 60, and 70 up to 80% along with min. bias as a function of p_T.

More…

Identified particle elliptic flow in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 182301, 2001.
Inspire Record 559609 DOI 10.17182/hepdata.93261

We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.

5 data tables

Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

More…

Elliptic flow in Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Ackermann, K.H. ; Adams, N. ; Adler, C. ; et al.
Phys.Rev.Lett. 86 (2001) 402-407, 2001.
Inspire Record 533414 DOI 10.17182/hepdata.93232

Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

2 data tables

Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.

Elliptic flow as a function of transverse momen-tum for minimum bias events