We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.
The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.
(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.
Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.
<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".
<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>
<p>$R_{HS}$ versus $p_T^B$ for $p$+$p$ and Au+Au collisions for four trigger selections.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>
We report the measurements of the t anti-t production cross section and of the top quark mass using 1.02 fb^-1 of p anti-p data collected with the CDFII detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma_{tt}=8.3+-1.0(stat.)+2.0-1.5(syst.)+-0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0+-2.2(stat.)+-4.8(syst.) GeV/c^2 is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.
Total cross section measurement. The second DSYS error is the uncertainty on the luminosity.
We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The Multi-Chain Model can provide a good description of the net baryon density in d + Au collisions at RHIC, and the derived parameters of the model agree with those from nuclear collisions at lower energies.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
We have searched for exclusive 2-photon production in proton-antiproton collisions at sqrt{s} = 1.96 TeV, using 532/pb of integrated luminosity taken by the Run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E_T > 5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gamma-gamma, pi0-pi0, or eta-eta production. The probability that other processes fluctuate to 3 events or more is 1.7x10^-4. An upper limit on the cross section of p+pbar --> p+gamma-gamma+pbar is set at 410 fb with 95% confidence level.
Upper limit on the cross section.
From a total data sample of 701.1 pb^-1 recorded with e+e- centre-of-mass energies of sqrt = 161-209 GeV with the OPAL detector at LEP, 11693 W-pair candidate events are selected. These data are used to obtain measurements of the W-pair production cross sections at 10 different centre-of-mass energies. The ratio of the measured cross sections to the Standard Model expectation is found to be: data/SM = 1.002 +- 0.011(stat.) +- 0.007(syst.) +- 0.005(theory), where the uncertainties are statistical, experimental systematics and theory systematics respectively. The data are used to determine the W boson branching fractions, which are found to be consistent with lepton universality of the charged current interaction. Assuming lepton universality, the branching ratio to hadrons is determined to be 67.41 +- 0.37(stat.) +- 0.23(syst.)%, from which the CKM matrix element Vcs is determined to be 0.96+-0.017(stat.)+-0.012(syst.). The differential cross section as a function of the W^- production angle is measured for the qqev and qqmv final states. The results described in this paper are consistent with the expectations from the Standard Model.
Measured cross section for the (lepton nu lepton nu) decay mode.
Measured cross section for the (quark quark lepton nu) decay mode.
Measured cross section for the (quark quark quark quark) decay mode.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.